

Mihaela Cardei, My T. Thai, Yingshu Li, Weili Wu

Annual Joint Conference of the IEEE Computer and Communications Societies, 2005. INFOCOM 2005

on the state of th

- ♦ Introduction
- ◆ Related Work
- ◆ Target Coverage Problem
- Solutions to Compute Maximum Set Covers
- **♦** Simulation
- Conclusion

Introduction

- Application of sensor networks
 - ✓ National security
 - ✓ Surveillance
 - ✓ Health care
 - **☑** Environment monitoring
- ◆ A critical issue in wireless sensor networks
 - ✓ power scarcity

 - ✓ communication/computation power usage ratio >1000

Introduction (cont.)

- ◆ Power saving techniques can generally be classified in the following categories
 - ✓ schedule the wireless nodes to alternate between active and sleep mode
 - ✓ power control by adjusting the transmission range of wireless nodes
 - ✓energy efficient routing, data gathering
 - ✓ reduce the amount of data transmitted and avoid useless activity.

Related Work

- ◆ The coverage problems can be classified
 - ✓ Area coverage
 - ☑Point (or target) coverage
- ♦ Cardei and Du [2]
 - ☑ Disjoint sensor sets (disjoint set covers)
 - ✓ every cover completely monitor all the target points

Related Work (cont.)

Target Coverage Problem

- ◆ Targets: know location, need to be continuously observed
- ◆ Sensors: a large number of sensors randomly deployed closed to the targets
- Basic station: a central data collector node
- ♦ In order to enlarge the lifetime
 - Sensor nodes have two states
 - Active or Sleep
 - Sensors send their location information to the BS
 - BS executes the sensor scheduling algorithm
 - and broadcast the schedule to all sensors

- ◆ Definition: target coverage problem
 - *m* targets know location
 - n sensors randomly are deployed
 - Schedule the sensor nodes activity
 - Such that all the targets are covered
 - Maximum the network lifetime
 - Lifetime of each sensor: [0, 1]

- All sensor are active continuously
 - Network lifetime
 - 1

- ◆ Cardei and Du [2]
 - $-S_1 = \{s_1, s_2\} = 1$
 - $-S_2 = \{s_3, s_4\} = 1$
 - Network lifetime
 - 1+1=2

♦ Every sensor is part of more than one set

$$-S_1 = \{s_1, s_2\} = 0.5$$

$$-S_2 = \{s_2, s_3\} = 0.5$$

$$-S_3 = \{s_1, s_3\} = 0.5$$

$$-S_4 = \{S_4\} = 1$$

- Network lifetime
 - 0.5+0.5+0.5+1=2.5

Solutions to Compute Maximum Set Covers

- ◆ Two heuristics for the MSC problem
 - ✓ Linear Programming based heuristic (*LP-MSC Heuristic*)
 - ✓ Greedy heuristic (*Greedy-MSC Heuristic*)

-Solutions to Compute Maximum Set Covers

- ◆ LP-MSC Heuristic
 - Model the MSC problem as an Integer Programming
 - use the relaxation technique to design a Linear
 Programming based heuristic

-Solutions to Compute Maximum Set Covers

Greedy-MSC Heuristic (C, R, w)

```
1: set lifetime of each sensor to 1
```

2: SENSORS = C

end for

18:

- 3: i=0
- 4: **while** each target is covered by at least one sensor in SENSORS **do**

```
/* a new set cover C_i will be formed */
     i = i + 1
     C_i = \emptyset
      TARGETS = R
      while TARGETS \neq \emptyset do
9:
        /* more targets have to be covered */
10:
        find a critical target r_{critical} \in TARGETS
11:
        select a sensor s_u \in SENSORS with greatest
12:
        contribution, that covers r_{critical}
        C_i = C_i \cup s_n
13:
        for all targets r_k \in TARGETS do
14:
           if r_k is covered by s_n then
15:
             TARGETS = TARGETS - r_k
16:
           end if
17:
```

```
19: end while

20: for all sensors s_j \in C_i do

21: lifetime_s_j = lifetime_s_j - w

22: if lifetime_s_j == 0 then

23: SENSORS = SENSORS - s_j

24: end if

25: end for
```

26: end while

27: return *i*-number of set covers and the set covers $C_1, C_2, ..., C_i$

Solutions to Compute Maximum Set Covers

C = {s1, s2, s3} R = {r1, r2, r3} W=0.1 r1 can be covered by s2 and s3

Select s1 s1 also covers r2 Now, we can select s2 or s3 to cover r3

Select s2

 $lifetime_s1 = lifetime_s1 - W$ $lifetime_s2 = lifetime_s2 - W$

- ◆ 500m * 500m area
- ♦ Number of sensor nodes: 25~75
- ♦ Number of targets: 5~15
- ♦ The sensing range:100~300 m

the sensing range is 250m

10 targets randomly deployed

More sensing range, more power consumption ??

Sensors	LP-MSC		Greedy-MSC	
	Lifetime	Runtime (s)	Lifetime	Runtime (s)
25	10.004	12.428	10.900	0.100
30	12.715	24.235	13.900	0.150
35	13.320	32.237	14.900	0.150
40	15.293	52.886	16.900	0.290
45	17.957	127.843	19.900	0.331
50	18.236	220.738	20.900	0.450
55	21.405	334.361	24.900	0.620
60	24.456	511.095	27.800	0.631
65	27.318	3262.181	29.700	0.851
70	30.260	11789.452	33.400	0.871
75	33.410	2976.460	36.300	1.202

Conclusion

- Maximum the network lifetime of the target coverage problem
 - By organizing the sensor nodes in non-disjoint set covers
- Propose two efficient heuristics
 - Linear Programming formulation
 - Greedy approach
 - Low running time
 - Is more scalable to large sensor networks

110001 0010 0 110010 101100 100 1100

Integer Programming Formulation of the MSC Problem

Maximize
$$t_1 + ... + t_p$$

subject to
$$\sum_{i=1}^{p} y_{ij} \leq T_i$$
 for all $s_i \in C$

$$\sum_{i \in C_k} y_{ij} \ge t_j$$
 for all $r_k \in R, j = 1, ..., p$

where

$$0 \le y_{ij} \le t_j \le 1$$

a set of n sensor nodes $C = \{s_1, s_2, ..., s_n\}$ a set of m targets $R = \{r_1, r_2, ..., r_m\}$

Let us set a bound p for the number of set-covers

$$C_k = \{i \mid \text{sensor } s_i \text{ covers target } r_k\}$$

 x_{ij} , boolean variable, for i = 1..n and j = 1..p; $x_{ij} = 1$ if sensor s_i is in the set cover S_j , otherwise $x_{ij} = 0$.

 $t_j \in \Re$, $0 \le t_j \le 1$, for j = 1..p, represents the time allocated for the set cover S_j .

$$y_{ij} = x_{ij}t_j$$

EP-MSC Heuristic

Step 1 Solve the linear programming LP formulated above. Let (y_{ij}^*, t_j^*) , i = 1..n and j = 1..p, be the optimal solution of the LP. Set the network lifetime G = 0.

Step 2 The first approximation solution can be obtained as follows:

Step 3 We iteratively repeat step 1 and step 2