An Energy-Efficient MAC Protocol for Wireless Sensor Networks

Qingchun Ren and Qilian Liang

Department of Electrical Engineering, University of Texas at Arlington

IEEE Globecom 2005

Presented by S.C.Chuang ,MNET 2006/03/31

Outline

Introduction

Protocol description and discussion
 Basic parameter design
 Phase switch schedule
 Time-slot assignment
 Simulations

Conclusions

Introduction

Most energy-efficient MAC protocols assume perfect network time synchronization

OClock drifts exist

- The duration of power on/off is seldom discussed
- Traffic arrival rate for different nodes at different time is fluctuating

Goals of This Paper

- The authors propose an energy-efficient MAC protocol
 - Remove tight dependency on time synchronization
 - Apply free-running method and fuzzy logic rescheduling scheme, phase-switching schedules are set up and clock drifts among nodes are compensated.
 - a trafficstrength- and network-density-based model to determine essential algorithm parameters

ASCEMAC Asynchronous Energy-Efficient MAC Protocol

ASCEMAC Protocol Model

- 1. TRFR-Phase: cluster members transmit message to cluster head
- 2. Schedule-Phase: cluster heads to broadcast phase-switching schedules
- 3. On-Phase: all nodes to power on their radios to make communication
- 4. Off-phase: all nodes to power off their radios

TRFR Message Format

T SRC AR _d	SR	FR	OR
-----------------------	----	----	----

Parameter Design

Combine
$$\begin{cases} T_f = \min\left\{(2W_{max} - T_n), \min_i(\frac{k_i}{\lambda_i} - T_n)\right\} \\ T_n = \frac{T_d T_f \sum_{i=1}^N \lambda_i}{1 - T_d \sum_{i=1}^N \lambda_i} & \phi = \sum_{i=1}^N \lambda_i \end{cases}$$

 T_n : on phase duration W_{max} : maximum waiting time T_f : off-phase duration λ_i : traffic arrival rate for node i T_d : slot time K_i : buffer size

Parameter Design

$$1)when \ 2W_{max} < \min_{i}(\frac{k_{i}}{\lambda_{i}}) \quad 2)when \ 2W_{max} \ge \min_{i}(\frac{k_{i}}{\lambda_{i}})$$

$$\begin{cases} T_{f} = 2W_{max}(1 - T_{d}\phi) \\ T_{n} = 2W_{max}T_{d}\phi \end{cases} \quad \begin{cases} T_{f} = \min_{i}(\frac{k_{i}}{\lambda_{i}})(1 - T_{d}\phi) \\ T_{n} = \phi T_{d}\min_{i}(\frac{k_{i}}{\lambda_{i}}) \end{cases}$$

The goal of adjusting parameters
 Extend the power off time to save more energy
 Adjust the data packet waiting time to an acceptable value

Schedule Message Format

backet type source address off phase duration on phase duration supper time slot duration for node i supper time slot starts defer time source address for ith supper time slot destination address for ith supper time slot

Interval of Schedule Broadcast

 $T_i = \xi_i \times T_{i-1}$

• ξ_i is the interval adjusting function

- Three parameters are used to design ξ_i
 - OAnte1: ratio of nodes with overflowed buffer
 - Ante2: ratio of nodes with high failing transmission rate
 - Ante3: ratio of nodes experiencing unsuccessful transmission

Interval of Schedule Broadcast

 The linguistic variables used to represent those parameters are divided into three levels: *Low*, Moderate, High

The rules for adjusting the interval of schedule broadcast

Rule	Ante1	Ante2	Ante3	Consequent
1	Low	Low	Low	Highly Increase
2	Low	Low	Moderate	Increase
3	Low	Moderate	Moderate	Decrease
4	Low	Moderate	High	Decrease
5	Moderate	Low	Moderate	Increase
6	Moderate	Low	High	Unchange
7	Moderate	Moderate	Moderate	Decrease
8	Moderate	Moderate	High	Highly Decrease
9	Low	High	High	Decrease
10	Moderate	High	High	Highly Decrease
11	High	Low	Moderate	Increase
12	High	Low	High	Unchange
13	High	Moderate	Moderate	Decrease
14	High	Moderate	High	Decrease
15	High	High	High	Highly Decrease

Interval of Schedule Broadcast

Using Fuzzy Function

• The authors mention that ξ_i is defuzzified by

$$\xi(x_1, x_2, x_3) = \frac{\sum_{l=1}^{15} \bar{\xi}^l \mu_{\mathbf{F}_1^l}(x_1) \mu_{\mathbf{F}_2^l}(x_2) \mu_{\mathbf{F}_3^l}(x_3)}{\sum_{l=1}^{15} \mu_{\mathbf{F}_1^l}(x_1) \mu_{\mathbf{F}_2^l}(x_2) \mu_{\mathbf{F}_3^l}(x_3)}$$

E. H. Mandani, "Application of fuzzy logic to approximate reasoning using linguistic systems", *IEEE Trans. On system, Man, and Cybernetics*, vol. 26, no. 12, pp. 1182-1191, 1977.

Time-slot assignment

 $\triangle t_1$: time difference between nodes

 $T_{s,min}$: the least time needed to detect the synchronization information

1) If
$$T_{s,min} < \Delta t_1 < T_d$$

 $\frac{n-1}{n}\%$ Successful transmission rate

2) If
$$T_d < \Delta t_1 < 2T_d$$

 $\frac{n-2}{n}\%$ Successful transmission rate

Rules for Time Slot Allocation

Ante1: traffic arrival rate

Ante2: unsuccessful transmission rate

Rule	Antecedent1	Antecedent2	Consequent
1	Low	Low	Moderate
2	Low	Moderate	High
3	Low	High	VeryHigh
4	Moderate	Low	Low
5	Moderate	Moderate	Moderate
6	Moderate	High	High
7	High	Low	VeryLow
8	High	Moderate	Low
9	High	High	Moderate

The MF of time-slot assignment

Simulation Environment

Simulator	OPNET
Area	100m x 100m
Radio range	30m
Symbol rate	40 Ksps
Data frame length	1024 bits
Clock drift range	1 to 100us

Successful Transmission Rate

Average Waiting Time

Average Energy Utility

Successful Transmission Rate

Node Density Adaptation

Traffic Strength Adaptation

Conclusions

- Exploiting a rescheduling method, instead of time synchronization, to handle mismatch caused by clock drifts, as well as taking advantage of fuzzy logical theory, which has distinctive capabilities for coping with uncertainty
- ASCEMAC acquires the optimal values of essential algorithm parameters
 - O Ensure average successful transmission rate
 - O Decrease the data packet average waiting time
 - Reduce energy consumption

THANK YOU