Self-Localizing Sensor Network Architectures

Filippo Mondinelli and Zsolt M. Kovacs-Vajna, Snior Member, IEEE

- Introduction
- System
- One-master architecture
- Three-master architecture
- Simulation and Results
- Discussion
- Reference

2004/9/23

Introduction

- As technology advances, applications of sensor and monitoring networks are ample:inventory,smart home, warehouse inventory...etc
- As the number of sensors increases, it becomes more difficult to <u>configure and</u> <u>locate</u> them in space; moreover, the fault probability increases and power saving becomes more and more important.

Introduction To locate a node 1.) simple triangulation (1)RSS(received signal strength) (2)AOA(angle of arrival of a signal) (3)TDOA(time distance of arrival) 2.) some sensors with known location 3.)GPS

Introduction

- To configure and communicate in a distributed sensor network
- Two architectures, one-master and three-master, which are discussed
- They are both fault tolerant and suitable for large number of sensors

Introduction

 Sensors are considered 1.)to communicate S S M with each other S 2.) can change position S 3.) are subject to failure S MO S are supposed to be exactly S identical and undistinguishable Fig. 1. Network topology. S: Sensor. M: Master. except for location in space

S

S

SO

MO

S

Distance Measurement

The correlation between power of transmitted and received signals can be derived from the Friis transmission formula

$$\frac{P_r}{P_t} = \frac{A_{er}A_{et}}{r^2\lambda^2}$$

2004/9/23

Wei-Shun Lee, mnet

(1)

System

- P_r recived power, [W];
- P_t transmitted power, [W];
- A_{er} effective aperture of receiving antenna, $[m^2]$;
- A_{et} effective aperture of transmitting antenna, $[m^2]$;
 - distance between receiving and transmitting antennas, [m];
 - wavelength, [m].

r

If the transmitter employs an isotropic source, (1) becomes

 All constant parameters can be grouped into a constant

$$P_r = P_t \cdot K \cdot r^{-2}.$$

2004/9/23

One-master Architectures

- This architecture employs four different operations to locate and activate all the sensors of the network.
 - A) single sensor identification
 - B) imprecise sensor location map definition
 - C) sensor location map refinement
 - D) optimal communication path calculation between a sensor and the master.

single sensor identification

1) Identification of Sons(to assign ID)
 2) Identification of Parents(for position)
 3) Neighbor Identification

 (for communication and map refinement)

time spent is proportional to

 $\mathrm{NUM}_{\mathrm{sensors}} \cdot (S + P + N).$

(4)

Imprecsie Sensor Location Map Definition

- CC has received all information. It must translate all integer power measurement in a floating-point distance
- Then, a constellation map is created with the information about parents of each sensor by triangulation method

sensor location map refinement

- mass center of neighbors of each sensors is used to update the sensors' position
- Ex.

sensor location map refinement

Fig. 2. Coordinate optimization.

$$x_8 = 3, \qquad y_8 = 7, \qquad x_{14} = 10, \qquad y_{14} = 0.$$

2004/9/23

sensor location map refinement

The position of sensor8 measured by sensor 14 is

 $x_8^1 = 0,$ $y_8^1 = 10,$ dx = -3, dy = 3.

By the method, the new location of sensor 8 is given by

$$x_8 = \frac{\sum_{i=1}^{N} x_8^i}{N}, \qquad y_8 = \frac{\sum_{i=1}^{N} y_8^i}{N}. \tag{5}$$

2004/9/23

optimal communication path

- CC has all information that can communicate with each of sensors through the master
- The next step is making communication efficient.
- Ex.

optimal communication path

Fig. 3. Energy computation over a path.

2004/9/23

optimal communication path

3-master architecture

- it is not necessary to identify the individual sensors
- when a sensor transmits data to the masters it is located by triangulation.
- the accuracy and precision of the power measurement is important

3-master architecture

simpler operations in the three-master
 1) Masters do not need to collect data
 2) Sensors do not do complicated calculation

Simulation and Results

- 1-master
- Condition:50 sensors,300X300 unit area 30 bit frame data

 P=15 N=30 and S=5;
 P=5 N=30 and S=5.

5 Company of the refinance times algorithm

Simulation and Results

- 3-master
- The system is simulated when the area of the triangle is the 0.6% and the 2% of the total area considered.

. 6. Uncertainty of the sensors positioning in a three-master architecture.

2004/9/23

Simulation and Results

 uncertainty in the 3-master is bigger than in the 1-master architecture and can be reduced increasing the distance between masters.

Conculsion and Discussion

- configuration and communication in two different sensor network architectures, were presented.
- one master
 - 1.it's possible to identify every node2.to locate all sensor in space3.finding lowest energy transmission path to reach the master

Conculsion and Discussion

- three master
 - 1.to locate by triangulation and when a transmission occurs
 - 2.can't optimize energy consumption during communication
 - 3.can localize moving sensor and dynamically changing sensor topologies

Conculsion and Discussion

3-master

→faster,flexible,expensive,energy wasting (about 30 times)

1-msater →less expensive, less power

2004/9/23

- [1] J. Beutel, "Geolocation in a PicoRadio Environment," Ph.D. dissertation, Dept. Elect. Eng., ETH Zürich, Switzerland, and Dept. Elect. Eng.Comp. Sci, Univ. California, Berkeley, 2000.
- [2] A. Lim, "Distributed Sensor Networks for Real-Time Systems With Adaptive Reconfiguration," J. Franklin Inst., 2001.
- [3] D. D. Patel, "*Energy in Ad-Hoc Networking for the PicoRadio*," M.S.

thesis, Dept. Elect. Eng. Comp. Sci, Univ. California, Berkeley, 2000.

2004/9/23

- [4] D. Kraus and A. Fleisch, *Electomagnetics with Applications*. New York: McGraw-Hill, 1999.
- [5] J. B. Andersen, T. S. Rappaport, and S. Yoshida, *"Propagation measurement and models for wireless communications channels*," *IEEE Commun. Mag.*, vol. 33, pp. 42–49, Jan. 1995.