Sensor Relocation in Mobile Sensor Network

Guiling Wang, Guohong Cao, Tom La Porta InfoCom 2005

Outline

- Introduction
- > Two phase relocation solution
- Performance evaluations
- Conclusion and Discussion

Introduction

- Mobile sensor is useful to coverage requirements and sensor failure
- in some environment, remote harsh or disaster areas can't access again, it is necessary to make use of mobile sensors to reach an adequate coverage level

Introduction

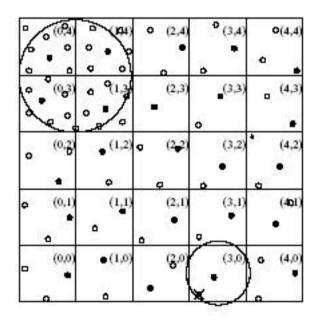
- Challenge:
 - strict response time requirement
 - shouldn't affect the application
 - minimize its effect while application working
 - must achieve balance energy costs with response time
 - balance the energy cost of a single node with the overall network energy cost to ensure max network lifetime

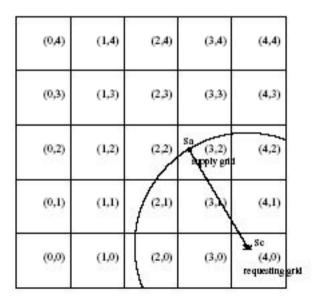
Introduction

- Sensor relocation method
 - ▹ VEC
 - Minimax
 - > Two-phase method
 - Finding the redundant sensors
 - Sensor relocation

Two phase relocation solution

- Finding the redundant sensor
 - broadcast advertisement
 - broadcast request
 - middle of the network



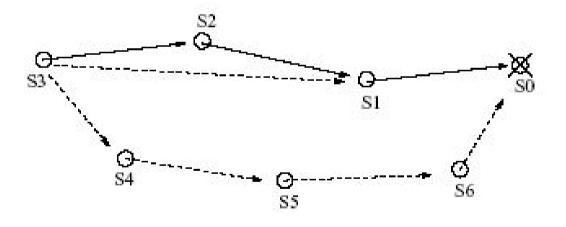

Fig. 1. The system model

Finding the redundant sensor

Grid-Quorum solution \succ Grids in one row are 0(4) organized into one (3,3 (4,3 supply quorum, and grids in one column (3.20 are into one demand (0, :)(1.1 (2. (3.1(4n)quorum. •(1,0 (4.0)(0,0)(2,0)The message overhead \succ is O(\sqrt{N}) Fig. The system model

Find the redundant sensor

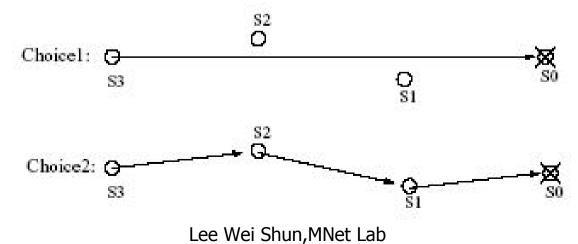
> How to get the closest redundant sensor ->stopping criteria



Sensor relocation

Direct movement adv--快,對整体網路最省電 Disadv--單單消耗某一個的電,容易因 耗盡而有新洞如果距離太長,不 能符合時間要求 Cascaded movement

Sensor relocation


Cascaded movement

Sensor relocation

How to select cascading node

may affect the sensing or the application task, to achieve the time requirement of application, the movement must take place in Ti.

11

2005/3/28

- achieve balance of max remaining energy and min energy consumption
- > Two cascading schedule with

E1-Emin1 <= E2-Emin2

E: the total energy consumption of whole system Emin: the minimum remaining energy of the system

The cascading schedule with min difference between the E and Emin is the best

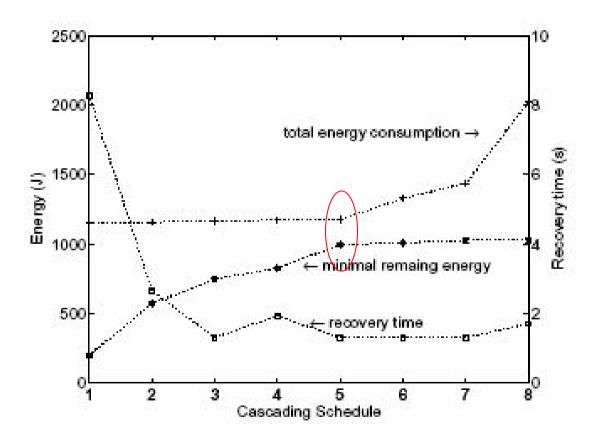
2005/3/28

Modified Dijkstra's algo

ModifiedDijkstra(Graph G(V,E), Vertex s_0) Initialization: $S = \{s_0\}, Q = V$ $DeleteEdge(s_0, 0)$ while not Empty (Q)Let $\mathcal{F} = \{ \langle s_k, s_l \rangle \mid \langle s_k, s_l \rangle \in S \times Q, \}$ 1. $d_{lk} \le (T_k + t_k) * speed \}$ 2. Find $\langle s_i, s_j \rangle \in \mathcal{F}$ such that $\forall \langle s_k, s_l \rangle \in \mathcal{F}, d_{ji} \leq d_{lk}$ 3. s_i .predecessor = s_i 4. $t_j = T_i + t_i - d_{ji}/speed$ 5. $\tilde{P}'_i = P_j - d_{ji}$ 6. Add s_j to S7. DeletedEdge (s_i, t_i) end

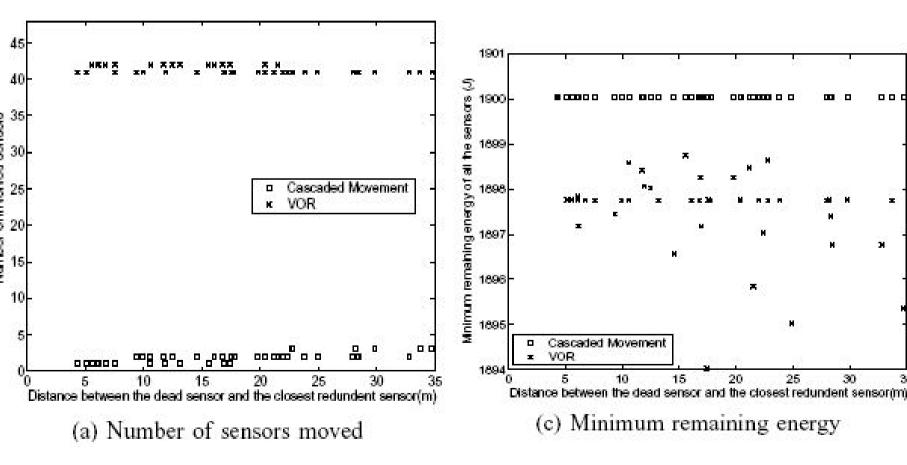
2005/3/28

Initialization: E = 0, Emin = -2, E' = 0, Emin' = -1while (1)

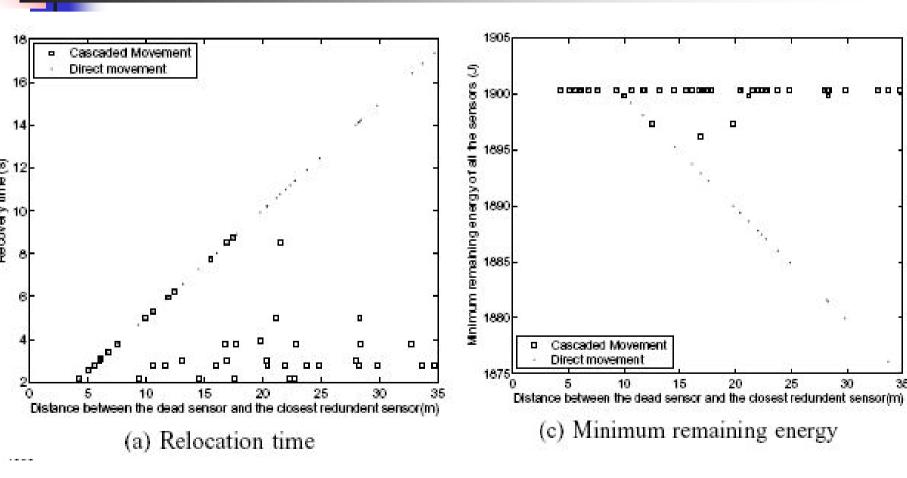

- find the shortest cascading schedule using the Modified Dijkstra's algorithm
- 2. record the minimum remaining power as Emin'
- 3. delete all edges $s_i s_j$ if $P_i d_{ij} \leq Emin'$


4 if
$$E' - Emin' < E - Emin$$
 then

$$E = E', Emin = Emin'$$


else

return the previously calculated schedule



Performance evaluations

2005/3/28

Performance evaluations

2005/3/28

Conclusion and Discussion

- Solves the problem of sensor relocation which can deal with sensor failure effectively and minimize the effect on applications
- The cascaded movement can reduce the relocation time
- To find the best cascading schedule can minimize the difference between the total energy consumption and the minimum remaining power

References

- I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A Survey on Sensor Networks," *IEEE Communications Magazine*, pp. 102–114, August 2002
- F. Aurenhammer, "Voronoi diagrams a survey of a fundamental geometric data structure," *ACM Computing Surveys*, vol. 23, pp. 345– 406, 1991.
- G. Cao and M. Singhal, "A Delay-Optimal Quorum-Based Mutual Exclusion Algorithm for Distributed Systems," *IEEE Transactions on Parallel and Distributed Systems*, vol. 12, no. 12, pp. 1256–1268, 2001.
- A. Carzaniga, D. Rosenblum and A. Wolf, "Design and Evaluation of a Wide-area Event Notification Service," ACM Transactions on Computer Systems, vol. 19, August 2001.

Reference

- T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. k. Saluja, "Sensor Deployment Strategy for Target Detection," *First ACM International Workshop on Wireless Sensor Networks and Applications*, 2002.
- D. Estrin, R. Govindan, J. Heidemann and S. Kumar, "Next Century Challenges: Scalable Coordination in Sensor Networks," *ACM Mobicom*, August 1999.
- P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, "The Many Faces of Publish/Subscribe," *ACM Computing Surveys*, vol. 35, no. 2, pp. 114–131, June 2003.
- Z. Ge, P. Ji, J. Kurose and D. Towsley, "Matchmaker: Signaling for Dynamic Publish/Subscribe Applications," *11th IEEE International Conference on Network Protocols(ICNP)*, November 2003.