Energy saving survey

2005/6/13

Outline

The way of energy used Energy conserving aspects Three methods to save energy - Power management - Time Scheduling - Prediction Conclusion Reference

The way of energy used (at node level)

Lower transmission distances (< 10m)</p>

- Lower bit rates (typically < kbps)</p>
- Limited battery capacity

Radio mode	Power consumption(mw)				
Transmit	14.88				
Receive	12.50				
Idle	12.36				
Sleep	0.016				

The way of energy used (at network level)

Collision

 – corrupted packets must be retransmitted and it increases energy consumption

- Overhearing
 - picking up packets that are destined to other nodes.
 Control packet overhead
- Idle listening
 - Listening to receive possible traffic that is not sent
 - This is the major source of energy inefficiency

Energy conserving aspects

- Energy efficient techniques
 - Transmission Power Control

Reduce the transmission power and at the same time, to get a good topology (higher connectivity, lower end-to-end delay etc.).

– Energy Efficient Routing

Route the packets through the minimum-energy path, so that the overall energy consumption for delivering a packet from the source to the destination is minimized.

 Energy efficient data-centric scheme using data gathering techniques to filter duplicate data for decreasing data transmission frequency
 Energy efficient MAC

Energy saving method(1)

Power management

Schedule nodes in *active-sleep* working cycles such that the radio unit of the node is powered off when not engaging in transmission or reception.

state	processing	memory	sensing	Radio
S 0	Active	Active	On	Tx,Rx
S1	Idle	Sleep	On	Rx
S2	Sleep	Sleep	On	Rx
S 3	Sleep	Sleep	On	Off
S4	sleep	sleep	Off	Off

Lee vvel-Shun.ivinet Lab

2005/6/13

Power management (cont)

State	Power(mw)	Latency(ms)	Threshold
S 0	1040		
S1	400	5	8
S2	270	15	20
S 3	200	20	25
S4	10	50	50

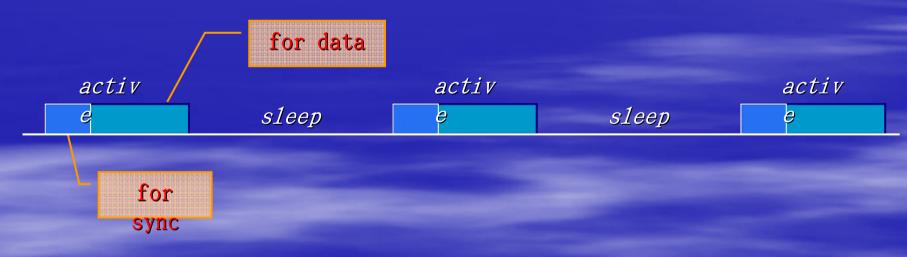
Goal:

 "Go to Reduced Power Mode after the user has been idle for a few seconds/minutes, and restart on demand"

Issues:

- Cost of restarting:latency vs. power trade-off
 - Increase in latency(response time)
 - Increase in power consumption due to startup

- When to change mode:


- Optimal vs. Idle Time Threshold
- When to wakeup:
 - Optimal vs. On-demand
- Problems
 - How to make sure enough nodes wakeup
 - The ability to react to burst events is weak

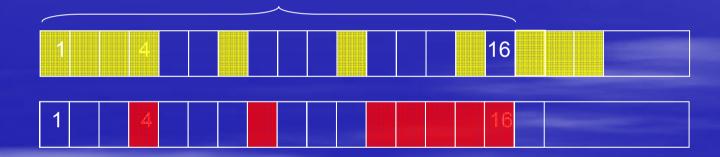
Power saving method(2)

Time Scheduling

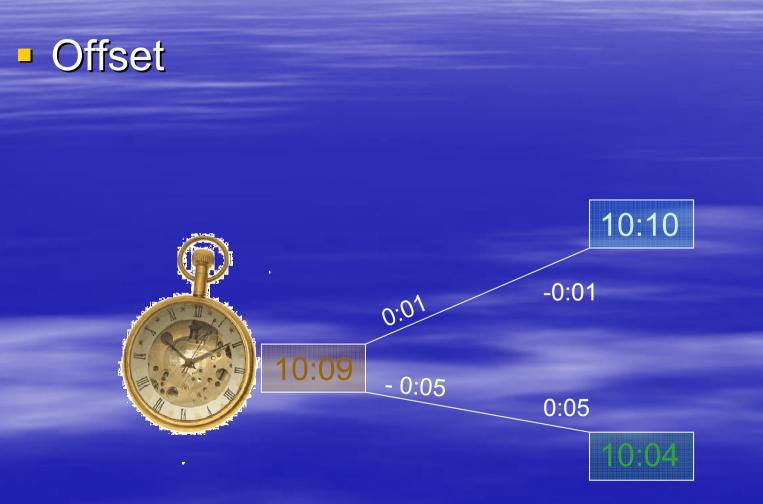
--periodic listen and sleep

- Fixed duty cycle active period, sleep period
- Synchronization is a major problem

S-			\mathbf{C}
5-	1VI	<u> </u>	5

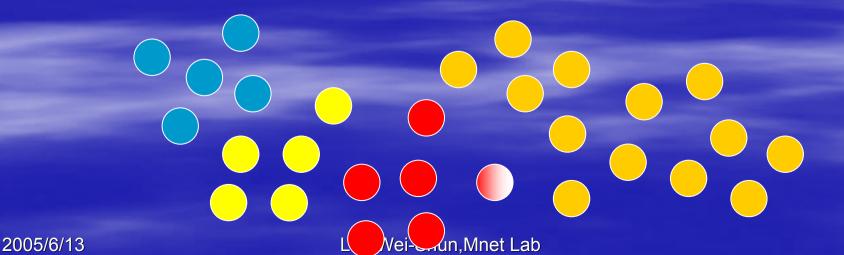

Receiver	Listen			
	for SYNC	for RTS	Sleep	
Sender 1	SYNC CS	Sleep		
Sender 2	CS	RTS Send data if CTS	S received	
Sender 3	SYNC CS CS	RTS Send data if CT	S received	
	cs cs	Send data if CTS	S received	

Sync problem
Global sync
No sync
Local sync


-- Quorum-based

2005/6/13

1	2	3	4		1	2	3	
5	6	7	8		5	6	7	8
9	10	11	12		9	10	11	12
13	14	15	16	Lee W	/ei-Sh	uh,Mr	et Sai	,16



2005/6/13

Local sync

Nodes of same color -- synchronize with each other
 Nodes of different colors -- know each other's timing

Which one to choose

Clock synchronization method	Awake time ratio	
Ne Currebrenization	DAI	53%
No Synchronization	Quorum-based	35.4%
Global Synchronization	10%	
	2 schedules	19%
Local Synchronization	3 schedules	28.4%
	4 schedules	37.87%

Pro and con

Global sync

Best performance in energy saving

Needs a good synchronization algorithm

No sync

- simpler and more scalable
- Simple = no need for clock sync??
- Less efficient in power saving
- Broadcast/multicast is inefficient

Pro and con (cont)

- Local sync
 More scalable
 - Inefficient with multiple schedules
 Protocols incomplete

Power saving method(3)

Prediction method

- Processing << transmission consumption
- Use computation history to predict
 - Next position
 direction of object
 - Next value collected
 - Next time may events occur
 - Next query result


For the purpose of 1.Reducing long distance transmission 2.Duplicate data filtering 3.Determining when can nodes sleep and wakeup

Prediction-based object tracking

Dual prediction-based reporting

- Both sensors and BS have the same prediction model and predict the future movement of mobile objects by historical information
- Transmissions of sensor readings are avoided as long as the predictions are correct.
- Prediction method
 - Instant
 - average
 - exponential

Selective activation based on prediction

a) Timestamp=0.0 second

(b) Timestamp=15.0 second

(c) Timestamp=31.0 second

Conclusion

- saving most energy = Max network lifetime ??
- Can't not ignore coverage problem while using sleep mode for saving energy.
- Properly use of prediction methods can save much energy but recovery schemes are needed (like pre-wakeup scheme...etc).

Reference

- [1] <u>http://www.ics.uci.edu/~quasar/tutorial/hipc.ppt</u>
- [2] "Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks" INFOCOM 2002 Y.C.Tseng, C.S. Hsu, T.Y. Hsieh NCTU
- [3] "An Energy-Efficient MAC Protocol for Wireless Sensor Networks" INFOCOM 2002 W. Ye, J. Heidemann, D. Estrin UCLA
- [4]"Asynchronous Wakeup for Ad Hoc Networks," Mobihoc'03
- [5]"Quorum-Based Asynchronous Power-Saving Protocols for IEEE 802.11Ad Hoc Networks," ICPP'03 (Best paper award)

- [6]"Power Conservation and Quality of Surveillance in Target Tracking Sensor Networks" Chao Gui and Prasant Mohapatra Computer Science Department University of California, Davis
- [7]"Dual Prediction-based Reporting for Object Tracking Sensor Networks" Yingqi Xu Julian Winter Wang-Chien Lee Department of Computer Science and Engineering Pennsylvania State University
- [8]" Dynamic Power Management in Wireless Sensor Networks" Amit
 Sinha Anantha Chandrakasan Massachusetts Institute of Technology
- [9] "Improving Energy Saving in Wireless Systems by Using Dynamic Power Management" Carla-Fabiana Chiasserini, *Member, IEEE*, and Ramesh R. Rao, *Senior Member, IEEE*