Siphon: Overload Traffic Management using Multi-Radio Virtual Sinks in Sensor Networks

Chieh-Yih Wan, Shane B. Eisenman, Andrew T. Campbell, Jon Crowcroft Sensys 2005

Outline

- > Introduction
- > Siphon design
- > Simulation evaluation
- Conclusion and Discussion

Introduction

- The existing experimental mote networks of any size can only operate under fairly light workloads
- These applications commonly experience periods of persistent congestion and high packet loss.
- >The bottleneck is sink.

Introduction

- >Funneling effect:
 - Since events generated under varying workloads move quickly toward sink points. This leads to increased transit traffic intensity, congestion, and packet loss so that reducing application fidelity measured at sink.
 - ➤ As a result, the sensors nearest the sink will use energy at the fastest rate.

Introduction

- Since most congestion control schemes [2][6][7]been proposed typically assume that all nodes are equal, they don't adequately address the funneling effect.
- The paper proposes a method that randomly or selectively distributes some multi-radio virtual sinks(VSs) to siphon off events.

Siphon

- Virtual Sinks are equipped with a secondary long-range radio inferface(e.g.IEEE802.11, or WilMAX in the future) that can dynamically form a secondary ad hoc network rooted at physical sink.
- They take selected traffic off the original WSN before the onset of congestion and move it the physical sink using the secondary radio network.

Siphon design

- > The detailed design of Siphon algorithm
 - Virtual sink discovery and visibility scope control
 - Congestion detection
 - > Traffic redirection

Siphon design-overview

Virtual sink discovery and visibility scope control

- Since there is no guarantee that a VS is adjacent to a congested region, a method for nodes to discovery a VS nearby is necessary.
- A signature byte is embedded in the periodic broadcasted control packets originated by physical sink. The byte contains a VS-TTL value.

Virtual sink discovery and visibility scope control

> Detail steps:

- > Physical sink broadcasts the signature byte with VS- $TTL = \iota$.
- ➤ For VS nodes ,if a signature byte is received ,then identify the forwarder as next Siphon hop. And rebroadcast the byte after setting VS-TTL = ℓ by the two radio interfaces.
- For common nodes, they record the VS ID and VS-TTL into a VS list and rebroadcast the packet after decrease VS-TTL.

Congestion detection

- > It indicates the proper time a sensor should attempt to utilize any VSs it has discovered.
- >Two techniques:
 - ➤ Node-initiated: when local channel load approaches or exceeds a theoretical upper bound or the buffer grows beyond a high mark. The packets generated by the nodes will set the redirection bit.
 - Post-facto: When physical sink measured application fidelity degrades below a certain threshold, physical sink propagate the signal by its secondary radio interface.

Traffic redirection

- That is enabled by the use of one redirection bit in the network layer header.
- >Two approaches:
 - On-demand : the bit is set only when congestion is detected
 - >Always-on :the bit is always set
- When a redirected packet is received, the node checks the list and forward to nearest VS.

> Performance metrics:

- Energy Tax = (Tot. pkts dropped in the network1)/(Tot. pkts rcvd at the physical sink)
- Energy Tax Savings = ((Avg E.Tax w/o Siphon) (Avg E.Tax w/ Siphon))/(Avg E.Tax w/o Siphon).
- Fidelity Ratio = (Pkts rcvd at the physical sink w/Siphon)/(Pkts rcvd at the physical sink w/o Siphon)
- Residual Energy = (Remaining energy)/(Initial energy).

-early congestion detection

-virtual sink's visibility scope impact

-scalability

Conclusion and Discussion

- The paper proposes a solution of growing need for improved congestion control, load balancing and overload traffic management by using a secondary radio network to siphon off overload traffic.
- Since WSN has many physical constraints, combination with other tools to achieve application requirement seems an alternative trend.