

MobiHoc 2006 Presented by Wei-Shun Lee

Outline

- Introduction
- Interactive localization
- Basic localization algorithm
- Error control
- Simulation and testbed experiments
- Discussion and conclusion
- Appendix

Introduction

- All sensor network tasks such as geo-routing, data-centric storage...etc, rely on precise localization technology. The localization methods includes three types
 - 🗆 GPS
 - Anchor nodes
 - Local coordinate assignment

The anchor nodes method would meet error propagation problem in which location information progressively propagates from anchor nodes to free nodes.

Introduction

- Using anchors and local computation to iteratively localize free nodes suffers from
 - Low success rate in network with low anchors
 - Being prone to error propagation
- The paper proposes an iterative localization with error control to achieve better localization quality in networks with low anchor density.

Interactive localization

DCG (distance constraint graph)

- □ Vertices sensor nodes
- □ Edges distance between pairs
- For a node t given N neighbors in DCG with known locations. Two localization error metrics are:
 - \Box Vertex errors { e^{v} }
 - \Box Edge error { e^{e} }(see Appendix A)

• the error of the node t is $e_t = g\left(\left\{e_i^v\right\}_{i \in N}, \left\{e_{(t,i)}^e\right\}_{i \in N}\right)$

Interactive localization

Initial phase

- In a low anchor density sensor networks. Assume each node can directly or indirectly communicate to each other.
- Anchor nodes broadcast their location information to the DCG.
- Free nodes compute a shortest path to each of the nearby anchors(each node needs 3~5 anchors to obtain initial estimate)

Interactive localization

Basic localization algorithm

ITERATIVE LOCALIZATION

Each node *i* holds the tuple $(x, e^{v})_{i}$, where

 ${\mathcal X}$ is the node location (or estimate);

 e^{v} is the vertex error.

Each edge *j* corresponds to a tuple $(z, e^e)_j$, where

 ${\cal Z}$ is the distance measurement;

 e^{e} is the edge error

Initialization step (optional)

computing shortest path to anchors

Basic localization algorithm

do {

for each free node t examine local neighborhood N; select neighbors based on vertex and edge errors $\{e^{e}\}$ and $\{e^{v}\}$ compute location estimate \hat{x}_{i} ; estimate error e_t ; decide whether to update *t*'s registry with the new tuple $\begin{pmatrix} & & \bar{k} \\ x_t, e_t \end{pmatrix}$ } while termination condition is not met.

Robust least-squares formulation

Basic least-squares multilateration

 $\Box x - x_i \Box = f(z_i)$

to square both size

$$\Box x \Box^{2} + \Box x_{i} \Box^{2} - 2x_{i}^{T}x = f^{2}(z_{i}), i = 0, 1, \dots$$

To simplify the above as

$$a_i^T x = b_i \rightarrow Ax = b$$

The basic solution is

$$\hat{x}_t = (A^T A)^{-1} A^T b$$

Robust least-squares formulation

Robust least-squares formulation

□ The least-squares solution gives

 $\hat{x}_{t} = \arg \min_{x} \Box Ax - b \Box^{2}$ $\Box \text{ We take error into consideration}$ $\hat{x}_{t} = \arg \min_{x} E \Box (A + \Delta A)x - (b + \Delta b) \Box^{2}$

The RLS solution is

$$\hat{x}_t = (A^T A + C_A)^{-1} \cdot A^T b$$

C_A is the error statistics.

Error control

Node registry

Each node maintains a registry with information sufficient to localize other nodes ,including node localization and error.

Neighbor selection

Nodes with high overall errors are excluded from the neighborhood and not used to localize others.

$$e_{total}\left(i\right) = e_{i}^{v} + e_{(i,t)}^{e}$$

Update criterion

Simulations

Networks with large numbers of anchors

Comparisons with other algorithms

ILS

- ILS_{nspa}
- MDS-MAP
- SDP

Anchor perc.	MDS	SDP	ILSnspa	ILS	SPA
10%	39	0	20	42	0
20%	0	6	35	64	0

Networks with three anchor nodes only

Scenarios	MDS	SDP	ILSnec	ILS	SPA
(a)	19	0	0	86	0
(b)	24	0	6	70	0
(c)	4	3	10	84	0
(d)	0	1	56	43	0

Discussion and conclusion

- Locality in storage and computation
 - ILS is a local method that location vector and estimation error term are distributed stored on the individual nodes. No central computation or storage is required.

Light –weight computation Computing location estimate using RLS is fast and can localize themselves in paralle.