

Improving QoS for Peerto-Peer Applications through Adaptation

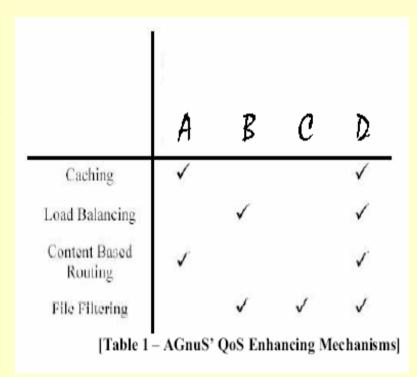
Kun- Yo Lin

Outline

- Introduction
- · A GnuS
- Evaluation
- Discussion
- · Hybrid system model
- · Conclusion

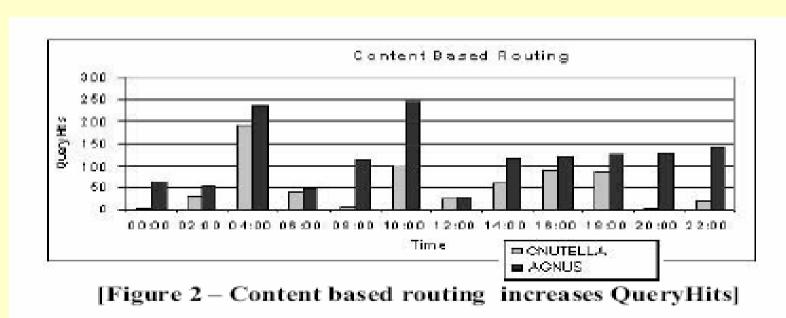
Introduction

- A peer-to-peer application should offer:
 - The ability to reliably reach any node connected to the network.
 - The ability to discover new resources on the network.
 - Adaptive behavior to compensate for the highly variable nature of peer-to-peer nodes.
 - Extensibility for supporting emergent application requirements.


Gnutella

- Gnutella suffers from the following Qos issues:
 - Scalability
 - Harmful user behavior
 - Uneven Resource Distribution
 - Poor Quality files

AGnuS Seeking

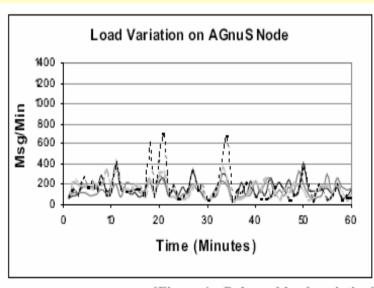

- AGnus = Altruistic
 Gnutella Server
 - A. Increase file availability across the network.
 - B. Increase network friendliness.
 - C. Improve file quality.
 - D. Reduce file-acquisition time.

Evaluation

Increased file availability (68%)

Evaluation

Increased network friendliness(56%)


Gnutella

Load Variation on Gnutella Node

[Figure 3 - Unbalanced load variation]

Time (Minutes)

AGnuS

[Figure 4 - Balanced load variation]

1400

1200

1000

W/800 800 400

200

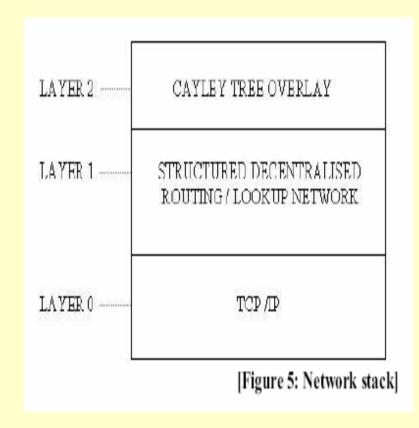
Evaluation

 Improving File Quality(22%,82%,16%,70%)

Standard Gnutella Node				
	Audio	Video	Software	Text
T1	67%	5%	10%	40%
T2	75%	7%	12%	20%
Т3	56%	9%	10%	33%
		AGnuS N	lode	
T1	88%	67%	25%	100%
T2	92%	100%	30%	100%
Т3	85%	100%	25%	100%

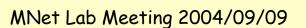
[Table 2 - Quality files downloaded (%)]

Discussion


- · Semi-centralized
 - Napster /SETI /Kazaa

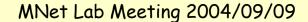
- Structured decentralized networks
 - Pastry /Chord

Hybrid System Model


- Multiple levels of adaptation
 - Network restructuring
 - Routing behavior adaptation
 - Peer-selection adaptation

Conclusions

- AGnus offers the following Qos improvement
 - Increased file availability.
 - Increased Network Friendliness.
 - Increased file quality.
 - Improved file acquisition time.
- We begun work on a hybrid system, and it can be used for other function
 - Peer-to-peer chat
 - -Kideo files and chat synchronal


- [1] The Gnutella Protocol Specification: http://dss.clip2.com/GnutellaProtocolO4.pdf
- [2] Hughes D, Warren I, Coulson G. "AGnuS: The Altruistic Gnutella Server", proceedings of the Third international conference on peer-to-peer Computing, Linköping Sweden, 2003.
- [3] Rains E, Sloane N; Cayley's Enumeration of Alkanes. Journal of Integer Sequences, 1999.
- [4] Walkerdine J, Melville L, Sommerville I. Dependability Properties of P2P Architectures, proceedings of the Third international conference on peer-to-peer Computing, Linköping Sweden, 2002.
- [5] Hardin G. The Tragedy of the Commons. Science volume 162, pp. 1243-1248, 1968.

- [6] Adar E, Huberman B. Free Riding on Gnutella. Fist Monday Oct. 2000.
- [7] Napster. www.napster.com.
- [8] SETI@Home. setiathome.ssl.berkeley.edu.
- [9] Kazaa. www.kazaa.com
- [10] Rowstron A, Druschel P. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems, Lecture Notes in Computer Science, 2001.
- [11] Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for Internet applications. Technical Report TR-819, MIT, March 2001
- [12] Zhang L, Floyd S, Jacobson V, Adaptive Web Caching, Proceedings of the 1997 NLANR Web Caching Workshop, April 1997
- [13] Reynolds P, Vahdat A. Efficient Peer-to-Peer Keyword Searching, Middleware 2003, Rio de Janeiro, Brazil. June 2003

