An Economic Model for Resource Exchange in Mobile Peer to Peer Networks

Present:

Kun- Yo Lin

Outline

- Introduction
- System Model
- Resource Types
- Producer-Paid Resources
- Consumer-Paid Resources
- Experimental Analysis
- Conclusion

Introduction – (1)

- Consider an urban area with thousands of vehicles
 - Drivers and passengers are interested in information relevant to their trip
- Using database stored at fixed site, It may have some potential drawback:
 - (1) responses may be outdated (2) not real-time
 - (3) costly (4) not robust

Introduction – (2)

- We explore a new paradigm that is based on peer-to-peer communications
- Advantages:
 - First ,better information accuracy ;especially for real-time information
 - Second ,cheap
 less than a cent per day, even if the communication is through all day

Introduction – (3)

- Opportunistic peer-to-peer system
 - Transmission range
 - Resource propagation
- Two type of resources
 - Producer-paid resources
 - Consumer-paid resources
- Two incentive mechanisms for two type

System Model

- Resource Model
 - Spatial / temporal
- Virtual Currency
 - Virtual Currency = coin, it is bought by real money
- Station to Vehicle Transmission
 - There are fixed stations and moving objects in system
- Vehicle to Vehicle Exchange
 - When A meet B, A will buy resources that A is interested in from B

Resource Types

- Producer-Paid Resources
 - Resources which the owner is interested in advertising are producer-paid
 - Example: gas station, car breakdown, emergency
- Consumer-Paid Resources
 - Resources which the consumer is interested in receiving are consumer-paid.
 - Example: Available parking slots
- Producer/Consumer-Paid Resources

Producer-Paid Resources

- First setup Values
 - A Producer can decide Initial budget C for R, and commission fee f
- How to incentive
 - If A has the information R, and A encounters B
 - nothing happened (both have that information)
 - A increase its coin counter by f,
 A sets its budget (C f) /2 ,and B does the same thing
 - If (C f) /2 < f, then A and B stop transmitting R</p>

Consumer-Paid Resources (1)

- Two Mode for Consumer-Paid Resources
 - Consumer
 - Pay for Resources
 - Broker
 - Take information of resource, but can not view it
 - Earn from other Consumers
 - Switch between two mode
 - When & Why

Consumer-Paid Resources (2)

Price of a Resource

- $-F(R) = -\alpha * t \beta * d \quad (\alpha, \beta \ge 0)$
- t: time length since the creation of R
- d: the distance from the location of R
- α : constant
- β : constant

Consumer-Paid Resources (3)

- How should α and β be determined?
 - PT= t + d /v (v is speed of vehicle)
 - Simply set the relevance is -PT to F(R)
 - So that, F(R) = -t (d / v)
 - $-F(R) = -\alpha * t \beta * d \quad (\alpha, \beta \ge 0)$
 - Depend on the two equations above,
 - We can set $\alpha = 1$, $\beta = 1/v$

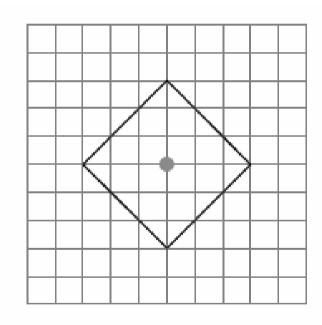
Consumer-Paid Resources (4)

Base on the relevance function, the price is

$$P(R) = \begin{cases} E - (\alpha \cdot t + \beta \cdot d) & \alpha \cdot t + \beta \cdot d < E \\ 0 & \alpha \cdot t + \beta \cdot d \ge E \end{cases}$$

- E is the value of the resource to a consumer,
 when the parking slot becomes available.
- E, α , β may differ for different resources

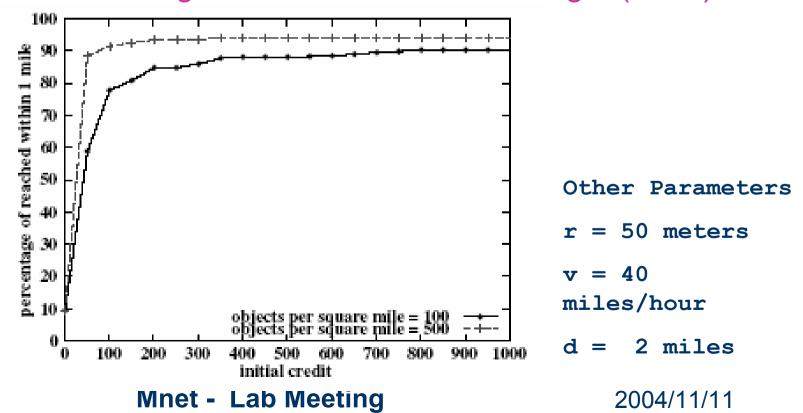
Two "Paid" comparison table


producer-paid	sender (A)	
receiver (B)	A increases its coin counter by f and sets the budget of R to be $(C-f)/2$. B sets the budget of R to be $(C-f)/2$.	

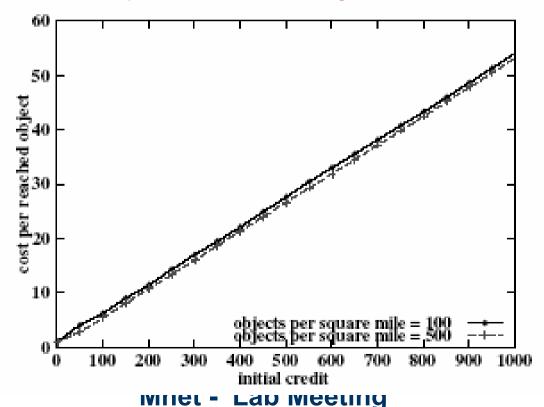
consumer-paid		sender (A)
receiver (B)	consumer	B pays $AP(R)$
	broker	no payment

Both-Paid Resource

Experimental Analysis


- Simulation Setup (producer)
 - Parameters
 - Traffic speed v
 - (v:10~50 miles/hour ,+=10)
 - Transmission range r
 - (r:10,50,100,150,200 meters)
 - Traffic density g
 - (g:100,500 objects/mile*mile)
 - Diameter of coverage area d
 - (d:0.4~2.0 mile ,+=0.4)

A coverage diamond area with diameter 6 blocks


Simulation results – (1)

Percentage of reached vs. initial budget (f=0.1)

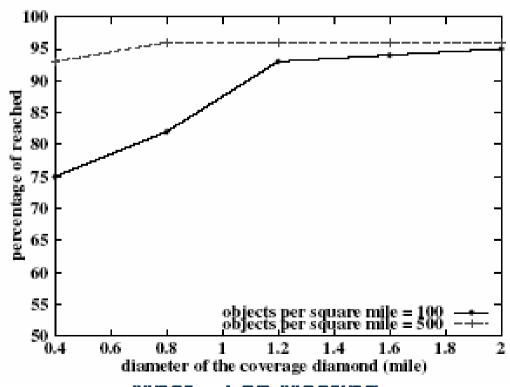
Simulation results – (2)

Cost per reached object

Other Parameters

$$r = 50$$
 meters

$$v = 40$$


miles/hour

$$d = 2 \text{ miles}$$

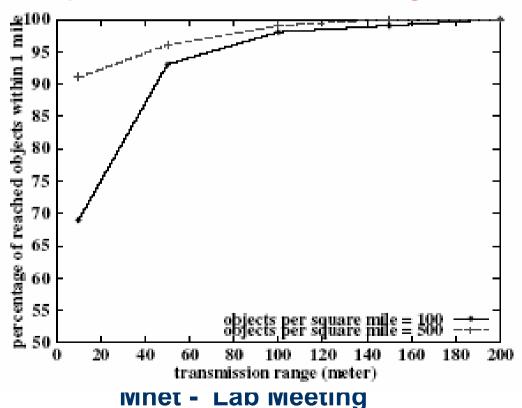
2004/11/11

Simulation results – (3)

Impact of size of coverage area

Other Parameters

r = 50 meters

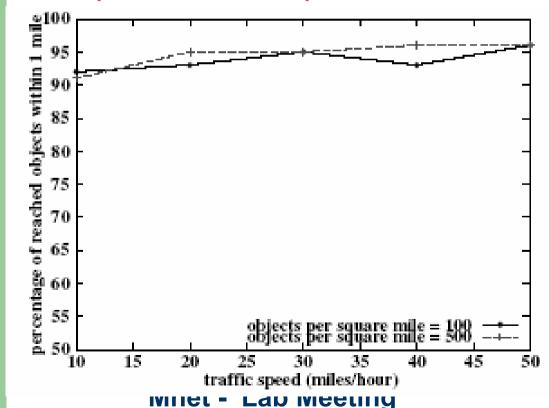

v = 40

miles/hour

ivinet - Lab ivieeting 2004/11/11

Simulation results – (4)

Impact of transmission range


Other Parameters
v = 40
miles/hour
d = 2 miles

2004/11/11

18

Simulation results – (5)

Impact of traffic speed

Other Parameters

r = 50 meters

d = 2 miles

2004/11/11

Analysis of Consumer-Paid policy

- Blind search vs. information guided search
 - Blind search (BS):
 - A consumer drivers around the area, and he occupies the first resource that is available
 - Information guided search (IGS) :
 - Start with a blind search, until a resource is available, and he occupies it
 - Or get information from the system, resource R is available; if another R' is closer, he will go to R'
 - Result
 - The IGS search time is half of BS search time

Conclusion

- Peer-to-Peer system
 - For vehicle to exchange resources
- Two type of resources
 - Producer-paid resources
 - Consumer-paid resources
- Incentive mechanisms
 - For two types