Improving Unstructured Peer-to-Peer Systems by Adaptive Connection Establishment

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

KunYo Lin 2005/10/21

Outline

- 1. Introduction
- 2. Related Work
- 3. ACE Three Main Phases
- 4. Adjustable Arguments
- 5. Simulation & Performance Evaluation
- □ 6. Conclusion

1. Introduction

05/26/05 Lab Meeting

LTM (Location-aware Topology Matching)

Problem Definition

- In unstructured P2P system, random join / leave
- Physical/Logical (Overlay) mismatching problem

Goal

- Build an efficient overlay
- Reduce unnecessary traffic
- Not shrink the search scope
- Fully distributed

Problem & Goal

2.Related Work

- Other ways to reduce traffic cost in unstructure-P2P system
 - Forwarding-based
 - Only forward to subset of neighbors
 - Index cache-based
 - Remember index of files/peers used before
 - Overlay topology optimization
 - 🗆 LTM

3. ACE Three Main Phases

Phase 1:

Neighbor Cost Table Construction and Exchanging

Phase 2:

Selective Flooding (SF) : *using minimum spanning tree algorithm*

Flooding neighbor Non-flooding neighbor

□ Phase 3:

Overlay Optimization

4. Adjustable arguments

Depth of Optimization

The period of exchanging Neighbor Cost Table time

- Event driven
- period

Depth of Optimization

Depth of Optimization

Depth of Optimization

1-neighbor closure

[Query Path		
[From	То	Corresponding Cost
	А	B, D	10+15=25
	В	E	8
	D	Е	14
	Е	C, D	7+14=21
[Total Cost		68

2-neighbor closure

Query Path		
From	То	Corresponding Cost
A	В,	10
В	Е	8
E	C, D	7+14=21
Total Cost		39

5.Simulation & Performance Evaluation

Performance Metrics

- Traffic cost
- Query response time
- Search scope
- Optimization rate
 - Query traffic reduction / overhead traffic increment
- Frequency ratio R (Stability of structure)
 - Frequency of using overlay / frequency of cost information changes

Simulation Environment

Overlay (logical) : 2000~9000 nodes

Physical : 27000 Internet-like nodes

Neighbors : 4,6,8,10 neighbors

ACE in Static Environment

Response time vs. optimization step

ACE in Dynamic Environment

Period q effect

Combine with Index Cache

Trade-off: Depth vs. Overhead

Optimization rate vs. frequency rate

6. Conclusion

- Using ACE in unstructured P2P system can reduce 65% traffic cost and 35% query response time.
- ACE is more effective in a topology with high connectivity density.
- It will make the flooding-based P2P systems more scalable and efficient.

Reference

Location Awareness in Unstructured Peer-to-Peer Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Yunhao Liu, Member, IEEE, Li Xiao, Member, IEEE, Xiaomei Liu,

Lionel M. Ni, Fellow, IEEE, and Xiaodong Zhang, Senior Member, IEEE

