Increasing availability in BitTorrent system with "HELP" messages

Kun-Yo Lin 2006/06/29 Mnet Lab Meeting

Outline

□ Introduction

- □ BitTorrent Overview
- □ Problem Definition
- □ Related Work
- □ "HELP" mechanism
- □ Hierarchical BT with HELP
- □ Performance Simulation

□ Conclusion

Introduction

□ BitTorrent

- BitTorrent has received great attentions for file distribution p2p model.
- It was confronted with <u>last block problem</u> due to dynamics of peers.

□ The HELP message

This paper introduces the HELP mechanism that is adding a specific message to BitTorrent to address the <u>problem</u>.

BitTorrent Overview

□ Characteristics

- TrackerSeeder
- Peer
 - → Local group

- □ File distribution
 - Cut the file into pieces
 - Rarest First → Local Rarest First

3

1

Problem Definition last block problem

Problem Definition last block problem

Related Work

- Local Rarest First [1]
- Smart Seeder [2]

"HELP" mechanism

□ Two steps of HELP mechanism

- Step 1 : Send out a HELP message
- Step 2 : Retrieve the rare piece

5

A simple example of a HELP message route

The problems might be caused by HELP messages

□ Loop

■ Attach the sender's unique ID to HELP messages

□ Endless

- Seeder(s) in network
 → HELP messages will pass to seeder(s) at last
- No Seeder
 → Cap the number of hops that HELP message passed

□ Flooding with HELP messages

Cap the number of <u>active HELP messages</u> sent by each peer

Active HELP messages

- When a peer sends out a HELP message, the message remains <u>active</u> before it receives the piece.
- □ How many active HELP messages should we limit?
- □ Step 2 : retrieve the rare piece
 - Share upload bandwidth to <u>downloaders</u>
 - → Share upload B.W. to (downloaders + HELP message sender)
 - By the simulations, we found that concentrating on sending <u>one</u> rare piece is better than sending several.
 - The amount of active HELP messages is capped at 2, and the two steps in HELP mechanism work like pipeline does.

Hierarchical BT with HELP message

- □ Alternative solution to the problems caused by HELP messages
 - Peers with similar completion percentage are assigned to the same cluster.
 - Peers will send out HELP messages to the higher cluster.
 - The structure addresses the loop and endless problems at the same time.

Hierarchical BT with HELP message

Performance Simulation

□ Performance metrics

Robustness

Number of seeders

Performance Simulation

□ Algorithms

- Global rarest first
- Local rarest first
- Random
- Local rarest first + HELP messages
- Hierarchical BT + HELP messages

Performance Simulation

□ Simulation environment

Number of Peers (with 1 seeder)	50
Number of Downloader	4
File Size	50MB
Piece Size	512KB
Upload Speeds of Peers	4 、 8 、 32 、 64 (KB/sec)
Speed Variation	95% ~ 105%

□ 3 parts

- Static environment
- Dynamic environment
- Overhead and Hierarchical BT structure

Static environment : robustness

17

Static environment : Number of seeders

Dynamic environment

□The event of dynamic

The event that <u>a peer leaves</u> and <u>a new peer joins</u> is set to follow the poisson arrival process.

Dynamic environment

A1	Poisson 2 ⁻¹			
Algorithm	300	200	100	
Global Rarest First	0	0	21	
Local + HELP message	0	0	31	
Local Rarest First (BT original)	5	75	99	
Random	8	77	100	

Overhead table

We increase the number of peers to simulate the overhead at different environment.

□ HAVE message

- A peer will broadcast a HAVE message to its local group when it gets a new piece.
- The number of HAVE messages will be peers number * pieces number * local group size ex. 50 peers , 50MB file → 50 * 100 * 10 = 50000

Number of peers (a)	Number of HELP messages hops (b)	Number of Have messages (C)	Overhead ratio (b/c)	Average overhead (b/a)
50	477.09	50000	0.95%	9.54
100	1034.67	100000	1.03%	10.35
150	1607.14	150000	1.07%	10.71
200	2162.04	200000	1.08%	10.81

Hierarchical BT

Conclusion

- □ A new HELP message mechanism is proposed in this paper.
- □ It enhances the efficiency of BitTorrent at static environment and reduces the occurrences of the last block problem at dynamic environment.
- Hierarchical BitTorrent structure not only successfully mitigates the overhead, but also speeds up the growth of a peer into a seeder.

References :

- □ [1] B. Cohen, "Incentives Build Robustness in BitTorrent," Proc. P2P Economics Workshop, 2003.
- [2] Ashwin R. Bharambe, Cormac Herley Venkata, and N. Padmanabhan, "Analyzing and Improving a BitTorrent Network's Performance Mechanisms", Infocom2006, Barcelona, Spain, April, 2006.
- [3] P. Zheng & C. Wang , "SODON: A High Availability Multi-Source Content Distribution Overlay", ICCCN 2004, Chicago, USA, October, 2004.
- [4] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and L. Garc es-Erice, "Dissecting BitTorrent: Five Months in a Torrent's Lifetime", PAM 2004
- □ [5] Mario Barbera, Alfio Lombardo, Giovanni Schembra and Mirco Tribastone "A Markov Model of a Freerider in a BitTorrent P2P Network" IEEE GLOBECOM 2005
- □ [6] Haitao Chen, Zhenghu Gong and Zunguo Huang "Parallel Downloading Algorithm for Large-volume File Distribution", IEEE PDCAT 2005
- [7] Arnaud Legout, Sophia Antipolis, and France "Understanding BitTorrent: An Experimental Perspective" I.N.R.I.A.
- □ [8] Sherwood, R.Braud, R.,and Bhattacharjee, B. "Slurpie: A Cooperative Bulk Data Transfer Protocol" In Proc. INFOCOM, pp.941-951, 2004.