Analyzing and Improve BitTorrent Performance

Microsoft Research Technical Report, February 2005

Mnet Lab Meeting KunYou Lin

2005/08/12

Outline

- I . Introduction
- □ II . BT Overview
- III. Simulation Metrics
- **IV.** Experiments
- **V** . Conclusion
- □ VI. My Research

I. Introduction

- A simulation-based study of BitTorrent
- Discuss the BT original core algorithm
- Provide some new methods to improve BT performance

II. BT Overview

BitTorrent Algorithm

BitTorrent Algorithm

- Downloading procedure
 - Client get a .torrent file
 - Client → Tracker
 - Tracker → Client [peer list]
 - Client → peers (neighbors)
- BT core algorithm
 - Choke / un-choke [10 sec]
 - Optimistic un-choke [30 sec]

Keyword Definition

🗖 TFT

- Tit-for-tat
 - Choke/ un-choke
- **LRF** (BT 4.0.3 remove this policy)
 - Local Rarest First
 - Client will choose the fewest block to download first

Block

block = piece

Local Rarest First

Block	1	2	3	4	5	6	7	8	9	10
Client										
Peer1										
Peer2										
Peer3										
Peer4				\land						

III. Simulation Metrics

Metrics

- Link Utilization
 - Uplink
 - Downlink
- Mean download time
- Content diversity
 - LRF
- Load on the seed

Fairness

IV. Experiments

First Experiment
Homogeneous Environment
Heterogeneous Environment

Workload Derived from a Real Torrent

Parameters

Node arrival pattern

→Using Tracker log

Uplink and downlink bandwidth
 Using Gnutella clients' speed

First Experiment

Metric	Vanilla BitTorrent				
Uplink utilization Unt	arr!! 91%				
Normalized seed load	127.05				
Normalized max. #blocks served	6.26				

Table 2: Performance of BitTorrent with arrival pattern from Redhat9 tracker log, and node bandwidths from Gnutella study.

Homogeneous Environment

To verify

- Is BT robust? Scalable?
- Effect of Seed's bandwidth
- Performance of BT's algorithm
- Experiment parameter
 - 1 Seed , bandwidth 6000Kbps
 - All nodes join during a 10 sec period
 - Peers bandwidth (D: 1500/U: 400 Kbps)

Homogeneous Environment (1) Number of nodes

Homogeneous Environment (2) Seed Bandwidth (kbps)

What is "mean upload utilization"?

Smart seed policy

The seed does not choke a leecher to which it has transferred an incomplete block.

The seed serves the one that it has served the least.

Homogeneous Environment (3) Smart Seed Effect

Homogeneous Environment (4) LRF vs. Random & High vs. Low (Seed)

Homogeneous Environment (5) LRF vs. Random @ time & interesting

Heterogeneous Environment

New Concepts

- Quick bandwidth estimation (QBE)
 - 1. Using lightweight schemes based on the packet-pair principle
 - 2. Peers can get neighbors speed quickly
 - □ 3. Optimistic un-choke wouldn't be needed
 - □ 4. Ignore overhead
- Pairwise block-level TFT
 - □ 1. A allows a block to be uploaded to B if and only if $Uab \leq Dab + \Delta$

Heterogeneous Environment

Parameters

- Flash crowd
 - □ 1000 nodes join at first 10 sec
- 3 type of nodes [Kbps]
 - □ High-end cable modem (D:6000 / U:3000)
 - □ High-end DSL (D: 1500 / U: 400)
 - Low-end DSL (D: 784 /U: 128)
 - Number of the 3 type peers are equal
- Seeder always uses "smart seed" policy

Heterogeneous Environment (1) BT, QBW, block TFT

Figure 10

Heterogeneous Environment (2) BT, QBW, block TFT

Figure 11

The problem is NOT match!!

Heterogeneous Environment (3) +Bandwidth-matching tracker

Heterogeneous Environment (4)

+Bandwidth-matching tracker

V. Conclusion

Experiment results

Experiment results

- BitTorrent TFT policy is unfair ,especially when high BW peers connect low BW peers.
- Seed bandwidth is critical, and it should choose different blocks to serve.
- LRF policy is important for "last block" problem.

New ideas

- Smart Seed policy
- Quick Bandwidth Estimation
- Block-Level TFT
- Bandwidth-matching Tracker

VI. My Research

Content diversity

Content diversity (Spread)

Original BT

This Paper

Smart Seed only send once

My Research

Plus a new message @ node

Reference

- Analyzing and Improving BitTorrent Performance
 - http://research.microsoft.com/~padmanab/ papers/msr-tr-2005-03.pdf
- Some Observations on BitTorrent Performance
 - SIGMETRICS'05, June 6–10, 2005, Banff, Alberta,

Canada.ACM 1-59593-022-1/05/0006.