PROP: a Scalable and Reliable P2P Assisted Proxy Streaming System

From: ICDCS' 04

Presented by 江文德

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusions

Introduction

- Three representative technologies for multimedia streaming:
 - Content Delivery Network (CDN)
 - Server-based Proxy
 - Client-based P2P

Introduction (Cont.)

 Advantages and Limitations of the Three Technologies

	Advantages	Limitations
CDN	Performance-Effective	Very Expensive
Proxy	Cost-Effective	Not Scalable (limited bandwidths and storages)
P2P	Highly Cost-Effective	Not Guarantee the QoS

Introduction (Cont.)

- A Further Approach
 - Segment-based Proxy Caching
 - Limitations
 - The Limited storage capacity
 - The reservation of continuous bandwidths will limit the number of clients
 - A proxy easily becomes a system bottleneck and forms a single point of failure

Introduction (Cont.)

PROP

- Collaborating and coordinating PROxy and its P2P clients
- Building scalable and reliable media proxy system in a cost-effective way

System Design

- Infrastructure Overview
- P2P Routing and Media Streaming
- Replacement Policies

Infrastructure Overview

- Two Main Components
 - The Proxy
 - The bootstrap site of the P2P overlay network
 - The interface between the P2P system and media servers
 - The Client Peers Connected by a P2P Overlay Network

Infrastructure Overview (Cont.)

- Each Peer in the PROP System Has Three Functionalities :
 - A peer is a client that requests media data
 - A peer is a streaming server
 - A peer is an *index server* that maintains a subset of indices of media segments in the system for content locating
- P2P Overlay in the System : *CAN*

Infrastructure Overview (Cont.)

- The Media Segments and Their
 Corresponding Indices are Decoupled
- The Segment Locating is Conducted in Two Steps :
 - Route the request to the peer maintaining the index of demanded segment
 - Select a peer that caches a copy of the segment

P2P Routing and Media Streaming

- The DHT Stores (key, value) Maps
 - *key*: a GUID (globally unique identifier) hashed from the URL
 - o value: the index of the segment
- Joining and Leaving P2P Routing
 - Getting a key space zone and take over the corresponding indices
 - Handing over the segment indices and merge the key space zone to a neighbor

- Publishing and Unpublishing Media Segments
 - publish(seg_id, location)
 - unpublish(seg_id, location)
 - seg_id: the segment identifier
 - location: IP address and port number of the peer that caches the segment copy

- Requesting and Serving Media Segments
 - o request(seg_id, URL)

Requesting and Serving Media Segments

- Updating Segment Popularity and Utility Values
 - PROP uses the *popularity* and *utility* values of segments to manage cached data
 - update(seg_id, access_info)
 - notify(peerset, seg_id, value)
 - peerset is the peers in the location list of the segment index
 - value is the popularity or utility value of the segment

Replacement Policies

- Popularity-based Proxy Replacement Policy
 - The proxy should hold those popular media objects to minimize the performance degradation due to peer failure
- Utility-based Peer Replacement Policy

Popularity-based Proxy Replacement Policy

$$p = \frac{\frac{S_{sum}}{S_0}}{T_r - T_0} \times \min(1, \frac{\frac{T_r - T_0}{n}}{t - T_r}),$$

- T₀, the time when the segment is accessed for the first time;
- T_r, the most recent access time of the segment;
- S_{sum}, the cumulative bytes that the segment has been accessed;
- S₀, the size of the segment in bytes;
- n, the number of requests for this segment;

Utility-based Peer Replacement Policy

Three Considerations

- Keeping those unnecessary copies of popular objects degrades the cache efficiency
- The cached data is prone to be flushed in a long stream session if LRU replacement is used
- The segments of a media object may be cached in a single peer, thus the availability is sensitive to the peer failure and leaving

$$u = \frac{(\log p - \log p_{min}) \times (\log p_{max} - \log p)}{r^{\alpha+\beta}},$$

r, the number of replicas of the segment in the system.

Performance Evaluation

- Metrics in the Evaluation
 - Streaming jitter byte ratio
 - Delayed start request ratio
 - Byte hit ratio

Performance Evaluation (Cont.)

Figure 2. Performance evaluation on REAL workload. Left: Streaming jitter byte ratio; Middle: Delayed start request ratio; Right: Byte hit ratio.

Performance Evaluation (Cont.)

Proxy Load Change

Performance Evaluation (Cont.)

Replacement Policy Comparisons

Figure 6. Replacement policy comparisons on REAL workload. Left: Streaming jitter byte ratio; Middle: Delayed start request ratio; Right: Byte hit ratio.

Conclusions

- The collaboration and coordination between the proxy and its P2P clients address the *scalability* problem of proxy-based technique, and also *eliminate* the concern of *unstable quality of services* by only relying on selforganized clients.
- The proposed content location mechanism is *efficient* and cost-effective.
- The load balance and data locality in the PROP system are determined by the segment replacement policies.