A Reliable Multicast Protocol for Wireless Mobile Multihop Ad Hoc Networks

> Selected from CCNC 2004 Present by Lin Yu-Chen 9/17/2004

- Introduction
- Problem Definition and Motivation
- Proposed Solution
- Simulations and Performance Evaluation
- Conclusions and Discussions

Introduction

- In a typical ad hoc network , hosts work in groups to carry out a given task .
- Some multicast applications , such as audio/video conferencing , can tolerate packet error and/or loss .
- Other applications , such as one-to many file transfer and military applications do not .

Introduction

- The characteristics of wireless mobile multihop ad hoc networks make reliable multicasting extremely challenging.
 - Lack of network infrastructure
 - Dynamic network topology
 - Scarce bandwidth and variable link capacity
 - High error rates

Problem Definition and Motivation

- A reliable multicasting guarantees the eventual delivery of all the multicast data to all the multicast group members.
- In resent year , several reliable multicast protocol have been proposed , but they still have some problems .

Problem Definition and Motivation

- It is suitable to multicast over a dense multicast group, but inadequate for sparse group.
- It is inoperable in nonclustered ad hoc networks.
- It restricts that the underlying unicast routing protocol is reliable

Problem Definition and Motivation

- Observing that a certain class of application will be almost infeasible on ad hoc networks without reliable multicasting.
- We need to have a reliable multicast protocol that requires minimal support from underlying network protocols and does not depend on an underlying clustering protocol.

Proposed Solution

- ReMHoc is a distributed receiverinitiated NACK-based reliable multicast protocol.
 - REQUEST
 - REPAIR
 - HeartBeat(HB)

Proposed Solution (REQUEST)

- When a receiver detects a missing DATA packet, it should request its retransmission by multicasting a negative acknowledgement (REQUEST)
- Request implosion
 - A great number of REQUEST are generated to request the retransmission of the same DATA packet
- Request timers
 - Whenever a receiver detects a missing DATA packet , it sets a request timer for a random interval.

Proposed Solution (REPAIR)

- If the member receiving a REQUEST has a cached copy of the requested DATA packet, it can respond by multicasting the cached copy (REPAIR)
- Repair implosion
- Repair timers

Proposed Solution (HB)

- As long as a receiver has not received that END packet, it sets a heartbeat timer. When the timer expires, a receiver multicasts a heartbeat (HB)
- Any group member which receives an HB packet, tries to find in its cache a copy of any DATA packet whose sequence number is higher than that indicated in HB packet.
- This mechanism ensures that all receivers will receive the last data packet and that receivers which do not receive any data packets for a "long" period can keep pace with other receivers.

State Transition Diagram (REQUEST)

Request timer (p) expires / Multicast REQUEST(p)

- The request timer interval is made dependent on the hop count between the receiver and source.
- It is desirable to make the request timer interval for a missing packet gets longer if the receiver has already sent REQUESTs for it before.

State Transition Diagram (REPAIR)

 It is desirable to make the one who is likely to time out first be the one that is closest to the requestor.

State Transition Diagram (HB)

Heartbeat timer expires / Multicast HB

- A receiver may not receive new data packets for a long period because the rate of arrival of data packets is low.
- The ReMHoc make the heartbeat timer interval a multiple of the packet interarrival time.

Simulations and Performance Evaluation

- Performance evaluation criteria can be stated as follows
 - Percentage of REQUESTs and HBs
 - Percentage of REPAIRs
 - Average recovery latency
 - Average end-to end delay
 - Overhead percentage

Simulations and Performance Evaluation

Effect of mobility and session size

— 0.3 - 0.7 m/sec., Distributed Loss Recovery
— - - 11 - 25 m/sec., Distributed Loss Recovery
— → 0.3 - 0.7 m/sec., Semi-distributed Loss Recovery
- → - 11 - 25 m/sec., Semi-distributed Loss Recovery
— → 0.3 - 0.7 m/sec., Centralized Loss Recovery

Simulations and Performance Evaluation

Effect of the receiver's cache size

Percentage of REPAIRs

0.8 - 0.7 m/sec., Cache_size = 2000 packets
- - - 11 - 25 m/sec., Cache_size = 2000 packets
- O - 0.3 - 0.7 m/sec., Cache_size = 50 packets

- ------ 0.3 0.7 m/sec., Cache_size = 25 packets
- → - 11 25 m/sec., Cache_size = 25 packets

Conclusions and Discussions

- ReMHoc is scalable with the number of multicast group members (session size)
- The centralized loss recovery has higher overhead percentage, higher average recovery latency and higher average end-toend delay than distributed loss recovery.
- Can this method extend to multi-channel ad hoc networks?