Power-Saving Protocols for IEEE 802.11-Based **Ad Hoc Networks Present by Lin Yu-Chen** 03/08/2005

Outline

- Introduction
- Problem Definition and Motivation
- Global synchronization
- The asynchronous protocols
- Analysis of energy saving
- Conclusion
- Reference

Introduction

- MANET: Mobile Ad hoc Network
- Various aspects of solution for saving power
 - Transmission power control
 - Power aware routing
 - Low-power mode
- Power saving modes in IEEE 802.11
 - Active mode
 - Power saving mode (PS)

Introduction

- The node have to monitor the channel and consume power even through the packets are not directed to them , a large amount of energy is consumed unnecessarily
- Lucent IEEE 802.11 WaveLan pc card characteristics (2Mbps)

Modes	Energy Consumption
Sleep Mode	14 mA
Idle Mode	$178 \mathrm{~mA}$
Receive Mode	204 mA
Transmit Mode	280 mA

Introduction

Power Saving at MAC Layer in IEEE 802.11(PS mode)

Problem Definition and Motivation

- MANETs have some characteristics
 - Multi-hop communication
 - Unpredictable mobility
 - No plug-in power
 - No clock synchronization mechanism

Problem Definition and Motivation

- The PS mode of IEEE 802.11 is designed for a single-hop (or fully connected) ad hoc network. When applied to a multi-hop ad hoc network, three problems may arise.
 - Clock Synchronization
 - Neighbor Discovery
 - Network Partitioning

Problem Definition and Motivation

- What if it is difficult or impossible to synchronize clocks? (Multi-hop)
- To sync or not to sync?
 - -Yes ,(enhanced IEEE 802.11 powersaving algorithm[1])
 - No ,(Three different asynchronous power-saving protocols[2])

Global synchronization

- A Power-saving Scheduling for IEEE 802.11 Mobile Ad Hoc Network"
- ICCNMC'03
- Ming Liu, Ming T. Liu
- The Ohio State University

The enhanced power-saving algorithm

- The ad hoc mode of 802.11 supports only single-hop ad hoc networks
- Use the overheard ATIMs to generate a contention-free schedule for data transmission
- Dynamic beacon interval

The enhanced power-saving algorithm

- Scheduling-based mechanism
- Benefit:
 - Improvement Network throughput
 - Decrease overhearing and idle listening
- Defect:
 - Complicated control
 - Can't work well for burst traffic
 - Can't work well if the topology is dynamic

The asynchronous protocols

- Design guidelines
 - More beacon
 - Overlapping Awake interval
 - Wake-up prediction
- In each beacon interval, there are three windows
 - Active window
 - Beacon window
 - MTIM window

Dominating-awake-interval

- Awake > BI/2 + BW
- Alternatively labeled odd and even sequence of beacon intervals
- Suitable for highly mobile environments

Periodically-fully-awake-interval

- Two types of beacon interval
 - Low power intervals
 - Fully awake intervals
- Suitable for slowly mobile environments

Quorum-based

- PS host only needs to send beacon
 O(1/n) of the all beacon intervals
- Quorum interval
 - -Beacon + MTIM, AW = BI
- Non quorum intervals
 - Starts with an MTIM window, after that, host may go to sleep mode, AW=MW
- Suitable for expensive transmission cost

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Summary

- Dominating awake interval
 - Most power consumption,
 - Lowest neighbor discovery time.
- Periodically-fully-awake interval
 - Balance both power consumption and neighbor discovery time.
- Quorum based
 - The most power saving
 - Longest neighbor discovery time

Analysis of energy saving

Parameter			Value	
Beacon Interval length			100ms	
Beacon window length			3ms	
ATIM window length			7ms	
PFAI T value			4	
Quorum-based n value			6	
			Augustino	
Clock synchronization method		ratio		
No Synchronization	DAI	53%		
	PFAI	32.5%		
	Quorum-based		35.4%	
Global Synchronization		10%		

Analysis of energy efficiency

traffic load (packets/sec)

Conclusion

- It can make trade-off between power saving and latency
- Global Synchronization has the best performance in energy saving ,but needs a good synchronization algorithm
- No Synchronization is simple and no need for clock sync ,but less efficient in power saving

Reference

- [1] Ming Liu; Liu, M.T., A Power-saving Scheduling for IEEE 802.11 Mobile Ad Hoc Network, ICCNMC 2003. 2003
 International Conference on , 20-23 Oct. 2003 Pages:238 -245
- [2] Yu-Chee Tseng; Chih-Shun Hsu; Ten-Yueng Hsieh, Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks ,INFOCOM 2002.
- [3] Feeney, L.M.; Nilsson, M., Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment, INFOCOM 2001.
- [4] Wei Ye; Heidemann, J.; Estrin, D., An energy-efficient MAC protocol for wireless sensor networks, INFOCOM 2002.
- [5] Takeuchi, S.; Yamazaki, K.; Sezaki, K.; Yasuda, Y., An improved power saving mechanism for MAC protocol in ad hoc networks, GLOBECOM '04. IEEE