Protocols for IEEE 802.11-Based Ad Hoc Networks

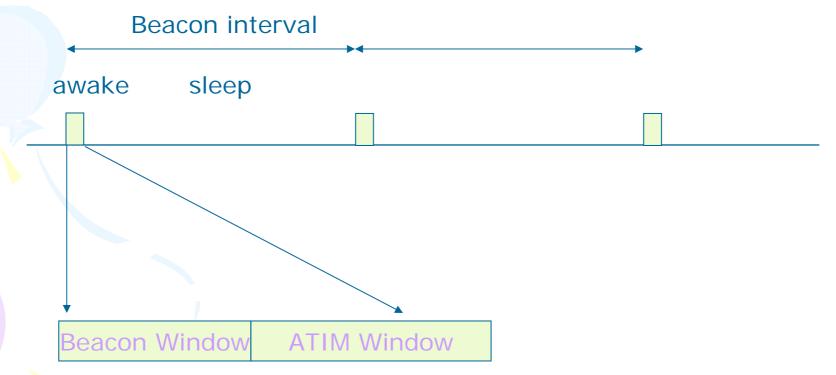
Present by Lin Yu-Chen 17/08/2005

Outline

- Introduction
- Problem Definition
- S-MAC protocol
- Experiment
- Conclusion

Introduction

- MANET: Mobile Ad hoc Network
- Various aspects of solution for saving power
 - Transmission power control
 - Power aware routing
 - -Low-power mode
- Power saving modes in IEEE 802.11
 - Active mode
 - Power saving mode (PS)


Introduction

- The node have to monitor the channel and consume power even through the packets are not directed to them, a large amount of energy is consumed unnecessarily
- Lucent IEEE 802.11 WaveLan pc card characteristics (2Mbps)

Modes	Energy Consumption
Sleep Mode	14 mA
Idle Mode	$178 \mathrm{\ mA}$
Receive Mode	204 mA
Transmit Mode	280 mA

Introduction

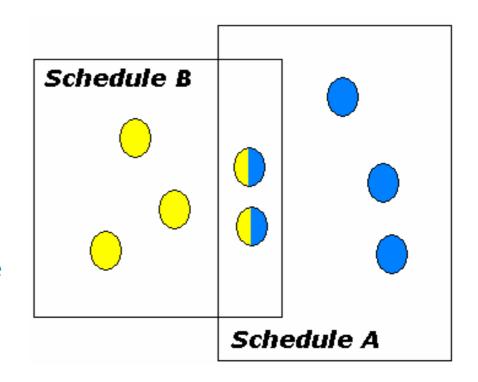
 Power Saving at MAC Layer in IEEE 802.11(PS mode)

Problem Definition - What causes Energy wastage?

- Collisions
 - leads to retransmission
- Idle listening
 - Major source consumes 50-100% of energy for receiving
- Control packet overhead
- Overhearing
 - Hearing packets intended for other receivers
- Lucent IEEE 802.11 WaveLan pc card characteristics (2Mbps)

Modes	Energy Consumption
Sleep Mode	14 mA
Idle Mode	$178 \mathrm{\ mA}$
Receive Mode	204 mA
Transmit Mode	280 mA

What is S-MAC?


- MAC protocol for wireless sensor networks
- Main emphasis on
 - Energy conservation
 - Collision avoidance
 - Scalability
- Secondary emphasis on
 - Fairness
 - Latency
 - Bandwidth usage
 - Throughput

S-MAC gives solutions

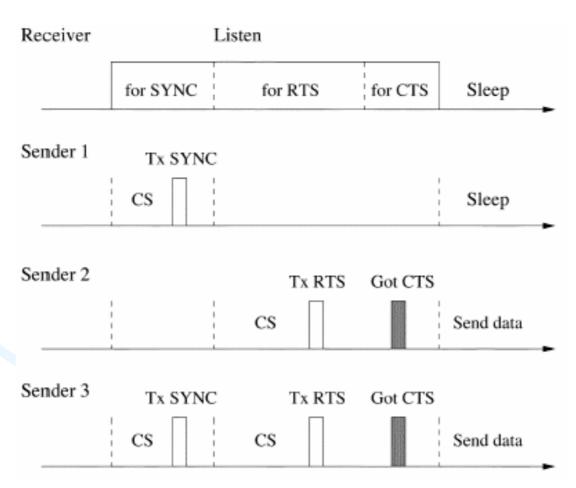
- Periodic listen and sleep
- Collision avoidance
- Overhearing avoidance
- Massage passing

Listen and Sleep periodically

- Each node follows a schedule of interleaved sleep and listen
- Radio is switched off during sleep and the node sets a timer to awaken itself
- Neighboring nodes preferably follow same schedules
- Border nodes follow 2 schedules and broadcast twice

Neighbors Co-operate

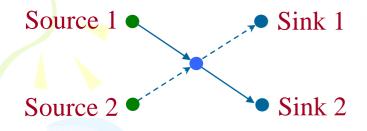
- Keep track of neighbors schedule
- Neighbors periodically broadcast their schedules.
- Tasks
 - Listen for fixed amount of time for schedule broadcast from neighbor
 - If no schedule is received, node follows its own schedule
 - If it receives a schedule from neighbor, it follows it and broadcasts its own during next listen period

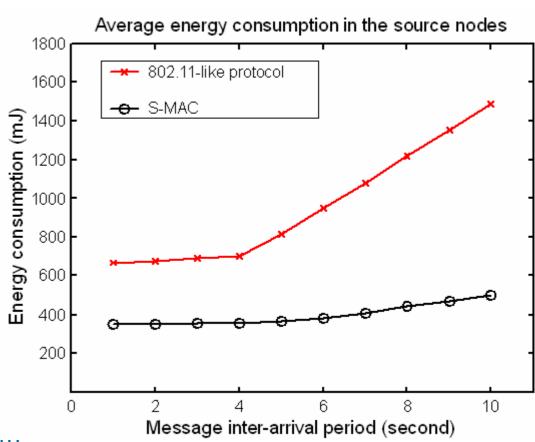

Collision Avoidance

- S-MAC follows 802.11 similar approach to resolve contention
 - Physical Carrier Sense: Performed at physical layer by listening to the medium
 - Virtual Carrier: Using Network Allocation Vector
 - Medium is free if both physical and virtual carrier sense indicate it is free
 - If medium is BUSY then the sender backs off using a randomized counter value
 - Control messages RTS CTS DATA ACK

Overhearing Avoidance: No Eavesdropping

- Overhearing significant energy wastage
- Interfering nodes are required to sleep when they overhear RTS and CTS
- All immediate neighbors of sender and receiver are required to sleep
- The duration field in each packet informs other nodes the sleep interval

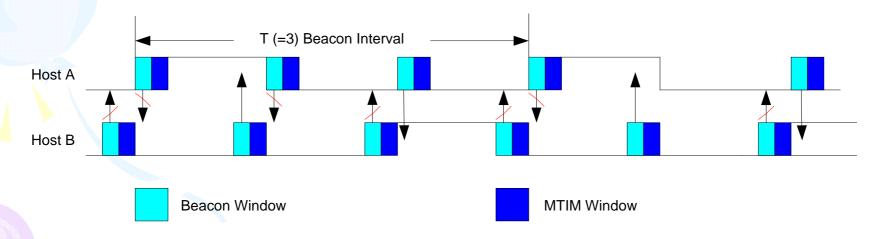

Message Passing



All this at what cost?

- Performance reduction in
 - Latency
- Adaptive Listening
 - Tries to reduce latency due to periodic sleep
 - Overhearing node wakes up at the end of transmission
 - If a next-hop-node neighbor can pass data immediately instead of waiting for scheduled listen time
 - If it is not the next-hop-node it goes back to sleep

Experiment



Each source node sends 10 message
— Each message has 400B in 10 fragments

Measure total energy over time to send all messages

Conclusion

- S-MAC has better energy conserving properties as compared to IEEE 802.11
- My idea:

References

- [1] Wei Ye, John Heidemann and Deborah Estrin, Medium Access Control with Coordinated, Adaptive Sleeping for Wireless Sensor Networks, IEEE/ACM Transactions on Networking, June 2004
- [2] V. Bharghavan and A. Demers and S. Shenker and L. Zhang, MACAW: Media Access Protocol for Wireless LANs, Proc. of the ACM SIGCOMM Conference, 1994
- [3] Ming Liu; Liu, M.T., A Power-saving Scheduling for IEEE 802.11 Mobile Ad Hoc Network, ICCNMC 2003. 2003 International Conference on, 20-23 Oct. 2003 Pages: 238 245
- [4] Yu-Chee Tseng; Chih-Shun Hsu; Ten-Yueng Hsieh, Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks, INFOCOM 2002.