Accurate and **Energy-efficient Congestion Level Measurement in Ad Hoc Networks** From WCNC 2005 **Present by Lin Yu-Chen** 10/28/2005

Outline

- Introduction
- Problem Definition and Motivation
- Two-level Congestion Measurement
 Node-Level Congestion Measurement
 - Flow-Level Congestion Measurement
- Energy-Efficient Congestion Level Measurement
- Conclusion
- Reference

Introduction

- Congestion in ad hoc networks

 Degrades throughput
 Wastes the scarce energy

 Efficient congestion control

 Accurate estimation
 - Timely estimation

Introduction

- Congestion level measurement is more difficult in ad hoc networks
- Congestion in ad hoc networks have a serious impact on energy efficiency
 - Take remedial actions as soon as congestion rise before the problem deteriorates

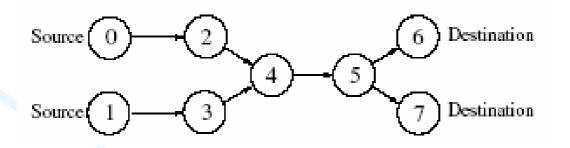
Problem Definition and Motivation

- The congestion measurement in ad hoc networks is harder than in wired or other wireless networks
 - Collision
 - Contention
 - -Interference

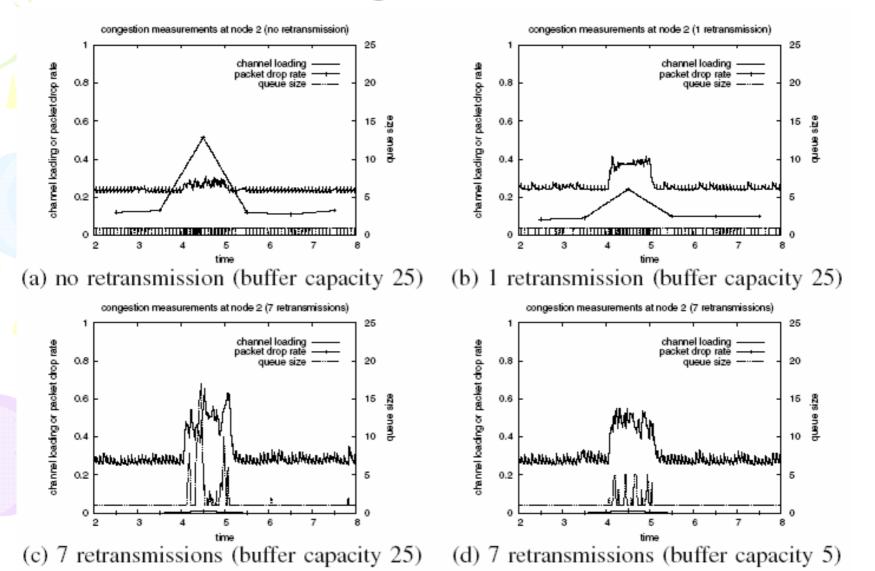
Problem Definition and Motivation

- Three problems in congestion measurement
 - The reduced queue length due to the dropped packets by collisions does not mean that the node has more bandwidth or congestion is alleviated
 - Contention among neighboring nodes makes a node's outgoing channel capacity time-variant
 - A node's outgoing channel capacity is affected by neighboring nodes' interference

Problem Definition and Motivation

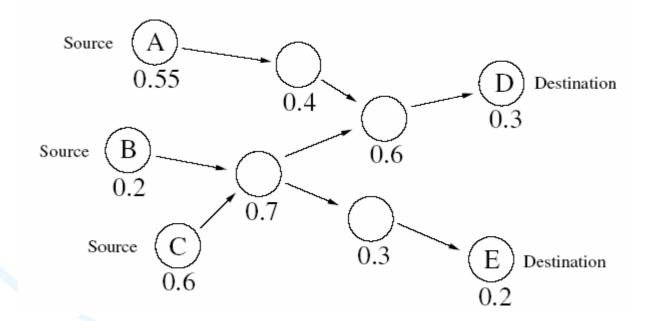

- Two-level congestion measurement
 - -Node-level
 - Flow-level
- Energy-efficient
 - -Lazy measurement technique

Node-Level Congestion Measurement


- Unsuccessful transmission lead to a high queue buildup, a high packet drop rate, or a high channel loading
- A combination of three metrics
 Channel loading
 Packet drop rate
 Buffer utilization

Node-Level Congestion Measurement

 The impact of various characteristics on the relevance of different congestion level measurement metrics


Node-Level Congestion Measurement

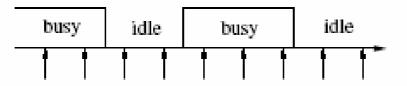
Flow-Level Congestion Measurement

- The traffic from the originating node is bottlenecked by the most congested node among the nodes along the flow's routing path towards the destination node
- Tradeoff between energy consumption and accurate congestion detection
 - Threshold
 - Compares with its current congestion measurement

Flow-Level Congestion Measurement

- In ad hoc networks, we cannot afford to measure all three metrics continuously
 - Cause a considerable energy consumption
 - -Reduce the network lifetime

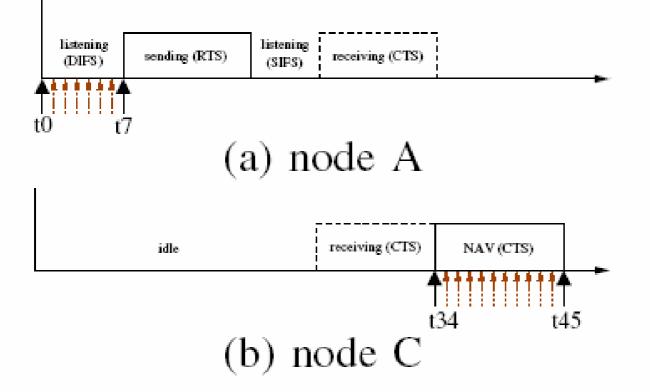
Buffer Occupancy Measurement


 Only perform the measuring action
 when a packet is inserted to or dropped from the buffer

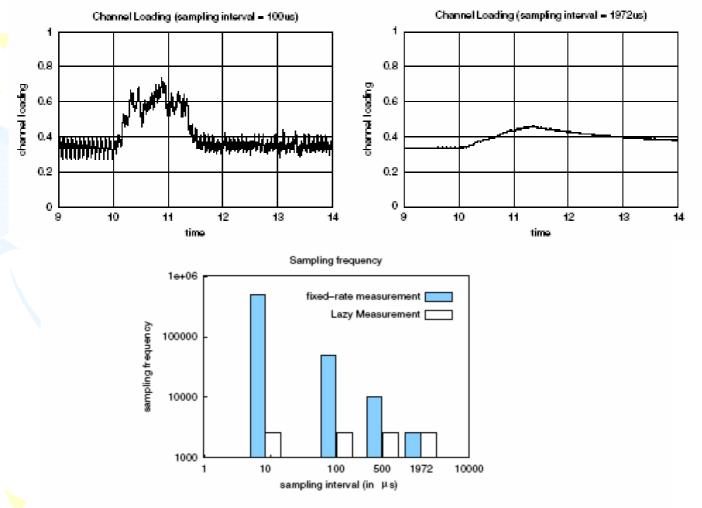
- Adapts its frequency according to the incoming traffic volume
- Avoid unnecessary measurements

- Packet Drop Rate Measurement
 - Define a fixed period called epoch
 - Maintain the statistics on the number of packet arrivals and packet drops during each epoch
 - Calculate the packet drop rate when a packet is newly enqueued or dropped either by queue overflow or by collisions in each epoch

- Channel Loading Measurement
 - Fixed-rate Channel Loading
 - measurement
 - Lazy Measurement


• Fixed-rate Channel Loading measurement

Channel loading measurement using fixed-rate sampling


- Lazy Measurement
 - Do not make any measurements during the doze state
 - Sample the channel activity at the end of an idle or a busy period

Lazy Measurement

Lazy channel loading measurement in an event-driven fashion

Performance of Lazy Channel Loading Measurement

Sampling frequency with respect to various sampling intervals

Conclusion

- This paper propose a two-level congestion detection scheme that provides an accurate congestion measurements in ad hoc networks
- Lazy channel loading measurement saves a lot of energy needed to accurately measure the channel loading

Reference

- [1] C. Wan, S. Eisenman, A. Campbell, CODA: Congestion Detection and Avoidance in Sensor Networks, ACM SenSys, 2003.
- [2] Y. Sankarasubramaniam, O. Akan, I. Akyildiz,ESRT: Event-to-Sink Reliable Transport in Wireless Sensor Networks," ACM MobiHoc,2003.
- [3] Jaewon Kang, Yanyong Zhang, Badri Nath, Accurate and Energy-efficient Congestion Level Measurement in Ad Hoc Networks, WCNC 2005