Improving VoIP Quality through Path Switching

IEEE INFOCOM 2005 Presented by Chun-Chieh Chang

Outline

- Introduction
 - VoIP
 - Factors affecting VoIP Quality
- Architecture of Path Switching System
- How Path Quality is Estimated
- Issues about Path Switching
- Performance Evaluation

Example of VolP

From http://www.itpilot.org.tw/email/itis/55/55-05.htm

Introduction

VoIP requires minimum service guarantees that go beyond the besteffort structure of today's IP networks.

Factors Affecting VoIP Quality

- Network Factors
 - Packet Loss
 - Delay Jitter
 - Network Delay
- Application Factors
 - Playout Buffer
 - Codec Performance

Factors Affecting VoIP Quality (cont.)

Fig. 2. Factors affecting overall loss and delay and their relations to voice quality.

Architecture of Path Switching System

Fig. 1. A typical application scenario of our path switching scheme.

APS Gateway Components

Path Prober

- Send UDP probes ,which are generated to emulate the behavior of a VoIP call ,on each available path periodically
- Receive feedbacks containing the delay and loss statistics
- Path Quality Estimator
 - Translate network path measurements into application quality estimates using the E-model

APS Gateway Components (cont.)

Path Selector

- Dynamically decide the best performing path for each voice call
- Packet Forwarder
 - Integrated with the path selector
 - Forward the voice packet along the corresponding path

APS Gateway Architecture

Fig. 3. The architecture of an application-driven path switching gateway.

Path Quality Estimation

- Perceived voice quality is typically measured by the Mean Opinion Score (MOS), a subjective quality score that ranges from 1 (unacceptable) to 5 (excellent).
- The MOS method is from "Methods for subjective determination of transmission quality", ITU-T Recommendation P.800, August 1996.

Path Quality Estimation (cont.)

The ITU-T E-Model defines a R-factor, which that ranges from 0 to 100, combines different aspects of voice quality impairments:

$$R = R_0 - I_s - I_e - I_d + A$$
 (1)

The E-Model method is from "The e-model, a computational model for use in transmission planning", ITU-T Recommendation G.107, March 2003.

 $MOS = 1 + 0.035R + 7 \times 10^{-6}R(R - 60)(100 - R).$

Path Quality Estimation (cont.)

Among all of the factors in Eq.(1), only I_d and I_e are typically considered variable in a VoIP system. Using default values for all other factors reduces the model to

$$R = 94.2 - I_e - I_d$$

• When R = 94.2, the value of MOS is 4.4

Estimating the Impact of Loss

 I_e accounts for impairment caused by both encoding and transmission losses.

$$I_{e} = \gamma_{1} + \gamma_{2} ln(1 + \gamma_{3}e)$$
$$e = E_{network} + E_{playout}$$

 γ_n is constant (n=1,2,3)

Estimating the Impact of Delay

 I_d accounts for impairment caused by network delay, codec-related delay and playout buffering delay.

$$I_d = 0.024d + 0.11(d - 177.3)I(d - 177.3)$$

 $d = D_{network} + D_{codec} + D_{playout}$

I(x) is 0, if x<0. Otherwise, I(x) is 1.

VoIP Quality as a function of end-to-end loss rate and delay

Issues about Path Switching

- Path Quality Prediction
- Estimating the Benefits of Path Switching
- Time-Scale Adaptive Path Switching Algorithm

Time-Scale Adaptive Path Switching Algorithm

Algorithm 1 Path switching	
1: for each unit of time do	
2: for $n = 1$ to N do	$t_n = 15 * 2^{n-1}$
3: update $\tilde{ ho}(t_n)$	
4: end for	
5: $t \Leftarrow rg \max\{ ilde{ ho}(t_n)\}$	
6: if clock = t and $\tilde{\rho}(t) > 0$ then	
7: if $Q_i - Q_s > \Delta, i \neq s$ then	
8: $s \Leftarrow i$, start using path s	
9: end if	
10: $clock \leftarrow 0$	
11: end if	
12: $clock \Leftarrow clock + 1$	
13: end for	

Performance Evaluation

A typical example that shows how path switching avoids quality degradations: (a) quality variations on the two paths (left), and (b) the resulting quality when path switching is applied (right).