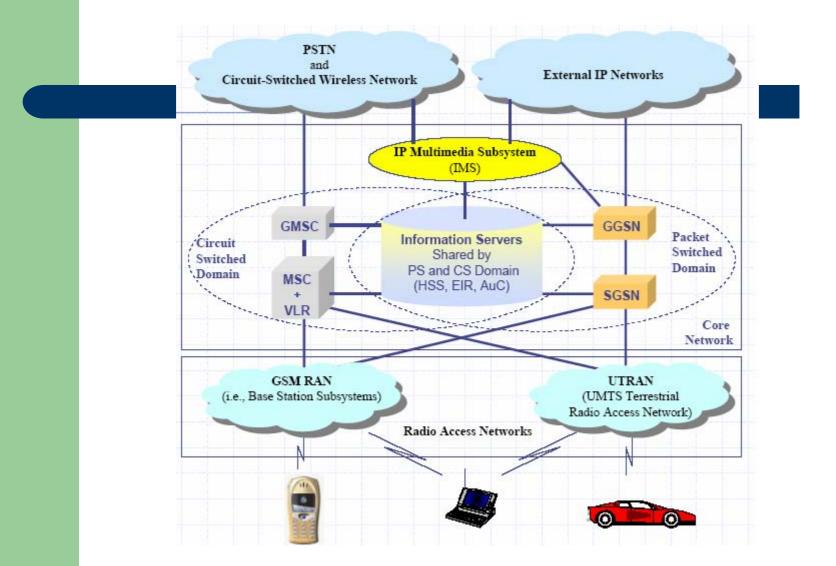
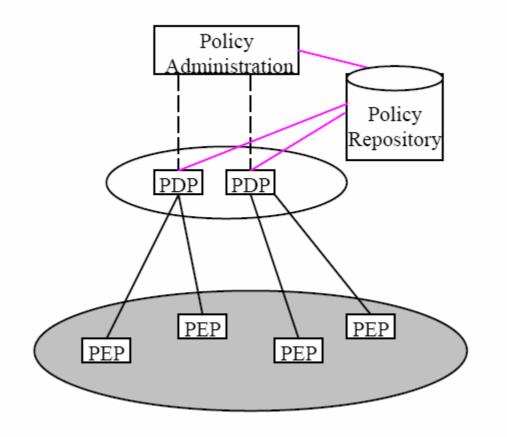
New QoS Control Mechanism Based on Extension to SIP for Access to UMTS Core Network via Different Kinds of Access Networks

> WiMob 2005 Presented by 張俊傑


Introduction

 The Universal Mobile Telecommunication System (UMTS) community has been increasingly looking for an architecture that can provide consistent networkingindependent end-to-end IP QoS that is an essential for supporting real-time application and services.


Introduction (cont.)

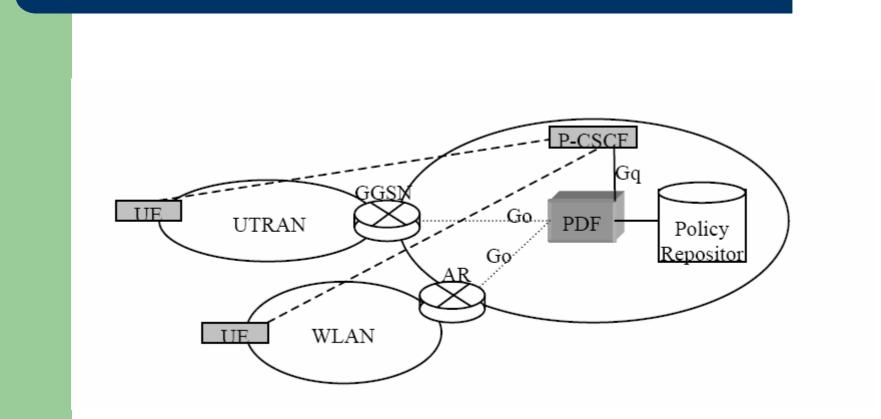
• From the architecture point of view, there is no a way between the access and core network or even between different domain edge proxies to exchange the policies and limitation of their network dynamically and efficiently.

3GPP Network Architecture

Policy based Architecture

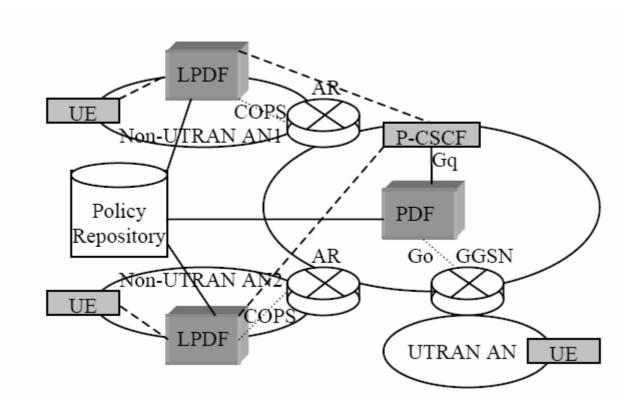
Components of Policy based Architecture

- **Policy Repository:** All the policy rules exist in this entity.
- **Policy Decision Point (PDP):** This is logically a centralized entity that makes the policy decision according to the policy rules and the dynamic and static information of the network.
- **Policy Enforcement Point (PEP):** PEPs enforce the policies in the network.


Components of Policy based Architecture (cont.)

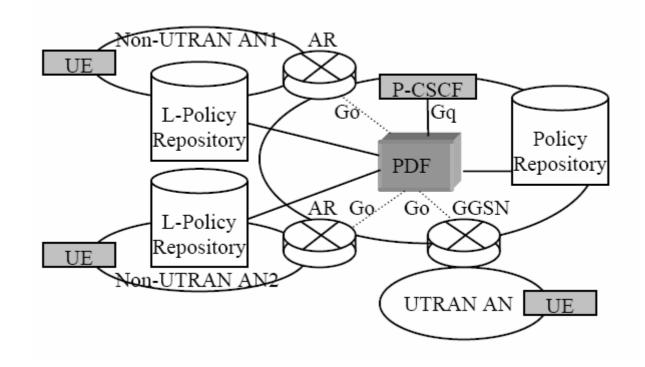
• **Policy Administration System:** This is the point in which the operator define his policies.

Problem


 The end-to-end QoS control mechanism defined by UMTS is limited to a single domain and doesn't work well for multidomain data path or inter-technology interoperation.

Modified Architecture for Multi Domain E2E Qos (1)

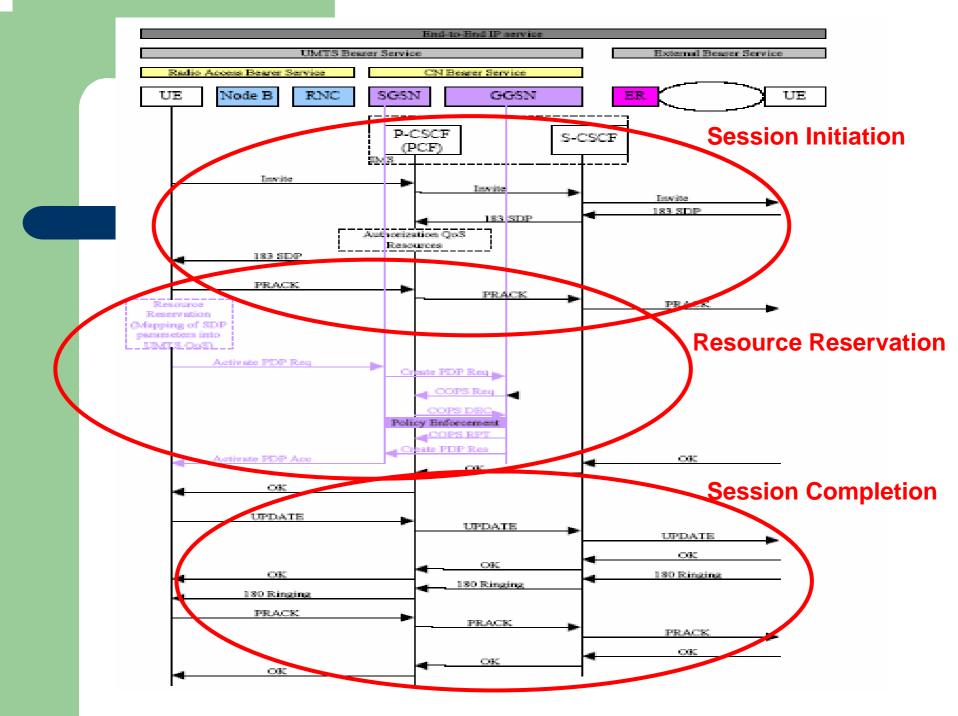
• The operators of all access networks should be the same


Modified Architecture for Multi Domain E2E Qos (2)

• L-PDF should support SIP and acts as a SIP proxy

- Then, by upgrading the existing proxies, a flexible and dynamic policy control for end-to-end QoS control will be possible.
- This push more cost but is more dynamic for policy enforcement according to the local policies.
- This method is more suitable for the access networks which had this kind of proxy for their local services regardless of their connection to core network of UMTS

Modified Architecture for Multi Domain E2E Qos (3)


- There is no need for supporting the session signaling in the access networks and then the cost will be decreased.
- But, the policy exchange can't be as dynamic as the previous architecture
- The S-PDF may be the bottle-neck of the system.

Another Problem

- From the signaling point of view, in the current session signaling, the only QoS parameters that can be indicated by the user are codec and bit-rate
- The user may wishes to have the choice in selecting the level of QoS for the same service because of the cost or end-device capabilities.
- For example, with the current QoS parameters in SDP, "video call" will be exactly mapped to a certain QoS class beyond of user choice but for a long international video call, the caller may desires an acceptable QoS but not a high quality to reduce his costs.

Extensions of SIP

- Traffic Information (TI)
 - The traffic type of the connection with bandwidth and packet size
- Sensitivity Information (SI)
 - The parameter like end-to-end delay, delay jitter and maximum packet loss

QoS Mapping Using Extension of SIP

	Table 1: Mapping of SDP media to UMTS QoS Classes defined by 3GP					
	Media inside of SDP	UMTS QoS Class				
	Audio	Conversational or Streaming				
	Video	Conversational or Streaming				
	Application	Conversational				
	Control	Interactive Priority 1				
	Data	Interactive Priority 3				
	Others	Background				

Table 2: Different QoS level and their mapping to QoS classes

UMTS QoS Class		
Conversational		
Streaming		
Interactive Priority 1		
Interactive Priority 2		

Test Results

Table 3: Results of resource admission control in signaling phase

	Traffic Load in Access Network	Asked QoS Level	Conflict Detection Location	Conflict Detection Time	Reaction Location to Conflict	Delay before Reaction	
Archl	High	High Quality	Core Networ k	After Resource Reservation Process	CN	383ms	
Arch2	High	High Quality	Access Networ k	Before Resource Reservation Process	AN	48ms Bes	t !!
Arch3	High	High Quality	Core Networ k	Before Resource Reservation Process	CN	72ms	

Conclusion

 This paper describes an new architecture with modified functional elements existing in IMS of UMTS to resolve the existing limitations in the architecture and control end-to-end QoS over the data path between different technologies and domains in heterogeneous wired-wireless networks beyond 3G.