Achieving Per-Stream QoS with Distributed Airtime Allocation and Admission Control in IEEE 802.11e Wireless LANs

07/20/2006

Presented by Chun-Chieh Chang
INFOCOM 2005

Outline

- Introduction
- Airtime-based Admission Control
- Allocation of Airtime in IEEE 802.11e
 Wireless LANs
- Parameter Negotiation Flow
- Performance Evaluation
- Conclusions

Introduction

 To support the transmission of (high-rate and often bursty) multimedia data with performance guarantees in an IEEE 802.11e WLAN, it is crucial to design judicious algorithms for admission control and resource allocation.

Introduction of 802.11e

- The MAC protocol in the 802.11e standard
 - Enhanced Distributed Channel Access
 - Contention-based channel access mechanism
 - Prioritized QoS service
 - HCF Controlled Channel Access
 - Polling-based channel access mechanism
 - Parameterized QoS service

Mechanism of EDCA

Figure 1. Mechanism of EDCA.

Mechanism of HCCA

Figure 2. Mechanism of HCCA.

Airtime-based Admission Control

- EDCA need admission control to determine how much traffic a wireless LAN can handle so that the prescribed QoS for each traffic stream can be maintained
- Of course, an admission decision should be made according to both admission policies and QoS requirements supplied by a higher-layer entity of a wireless station, usually the application layer.

QoS Requirement

 These requirements are specified in the TSPEC element in the IEEE 802.11e standard and are submitted to the admission control unit (ACU) by stations carrying the streams.

Parameters of TSPEC

- The Mean Data Rate (p)
- The Peak Data Rare (P)
- The Maximum Burst Size (σ)
- The Minimun PHY TX Rare (R) field
- The Delay Bound (d)
- MSDU Size (L)

Admission Policies

 The ACU may decide to admit a stream only if its peak data rate can be supported (for the best QoS) or may simply admit the stream as long as the mean data rate is available.

Dual-Token Bucket

Guaranteed Rate

Fig. 4. Arrival curve at the entrance of MAC buffer and the guaranteed rate for a traffic stream.

Airtime-based admission control for EDCA

Controlled Airtime Usage in EDCA

- To control a station's airtime usage in EDCA, one may choose to control
 - the TXOP limit of each station
 - 2. the frequency of a station's access to the wireless medium.

Controlling the Accessing Frequency

 Several EDCA parameters can be used for controlling AF, including minimum/maximum contention window size and arbitration inter-frame space (AIFS)

AIFS[i] AIFS[i Immediate access when Medium is free >= DIFS/AIFS[i] DIFS Contention Window DIFS/AIFS PIFS SIFS **Busy Medium Backoff Slots Next Frame** Slot time Select Slot and Decrement Backoff as long Defer Access as medium is idle

Figure 49—Some IFS relationships

Parameter Negotiation Flow

Fig. 9. Signaling and exchange of messages when a QoS traffic stream is added to an HC-coordinated 802.11 wireless LAN.

Performance Evaluation

Fig. 11. Comparison of system efficiency, in terms of the total throughput, between HCCA and EDCA. *A new station carrying a single stream is added to the wireless LAN about every 5 seconds and transmits at 54 Mbps. The height of each "stair" in the figure is equal to a stream's guaranteed rate = 5 Mbps.

Throughput

Fig. 12. Comparison of throughput between controlling stations' TXOP limits and CW_{min} values. *The figures shows that in EDCA. controlling stations' TXOP limits and controlling the CW_{min} values result in the same performance in terms of streams' throughput.

Delay analysis

Fig. 13. Comparison of delay between controlling stations' TXOP limits and CW_{min} values. *The figures shows that in EDCA, controlling CW_{min} values may result in a large delay variance but still satisfy all stream's delay bound.

Conclusions

- Based on the traffic profile given in the TSPEC and the dual-token bucket regulation, a guaranteed rate is derived for our airtime-based admission control.
- The admission control is integrated with the contention-based Enhanced Distributed Channel Access (EDCA), which together can provide so-called "parameterized QoS".