

Comparative Study of Routing Metrics for Multi-Radio Multi-Channel Wireless Networks

Speaker: 張俊傑

WCNC 2006

Outline

- Introduction
- Related Works
- AETD: The Proposed Routing Metric
- Performance Evaluation
- Conclusion

Introduction

- IEEE 802.11 system often suffers low channel utilization and poor system throughput.
- Recently, the multi-radio multichannel network architecture has been recognized to improve performance.

- Challenges in multi-radio multichannel network architecture:
 - channel assignment
 - channel utilization
 - high-throughput routing
- This paper focuses on routing problem.

Related Works

- To find a better path:
 - hop-count routing metric (HOP)
 - cumulative expected transmission count (ETX): link-quality factor
 - cumulative ETT (CETT): transmission rate
 - WCETT: channel diversity

Computing ETX

$$p = 1 - (1 - p_f) * (1 - p_r)$$

$$s(k) = p^{k-1} * (1-p)$$

$$ETX = \sum_{k=1}^{\infty} k * s(k) = \frac{1}{1-p}$$

p: probability of transmission failure

pf: forward pr:reverse

S(k): probability of transmission successful with k times 6

Computing ETT

 The authors define the ETT of a link as a "bandwidth-adjusted ETX"

$$ETT = ETX * \frac{S}{B}$$

B: bandwidth

WCETT

Consider the impact of channel diversity

$$X_j = \sum_{\text{Hop i is on channel j}} \text{ETT}_i \quad 1 \leq j \leq k$$

WCETT =
$$(1 - \beta) * \sum_{i=1}^{n} \text{ETT}_i + \beta * \max_{1 \le j \le k} X_j$$

WCETT (cont.)

• Impact of β

Path	Sum	Max	WCETT	WCETT
			$(\beta = 0.9)$	$(\beta = 0.1)$
1	27	22	22.5	26.5
2	33	22	23.1	31.9
3	34	20	21.4	32.6
4	8	8	8	8

Example

Source: a

Destination: e

HOP: a->d->e

ETX: a->d->e

CETT: a->c->d->e

WCETT: a->b->d->e

The Proposed Routing Metric

- The authors bring up two new metrics:
 - ETD: Expected end-to-end transfer delay
 - EDJ: The lower bound of expected delay jitter
- The authors think an ideal route shall have a small ETD as well as a small EDJ.

Computing ETD and EDJ

$$\text{ETD}_r = \sum_{h_i \in \mathcal{H}_r} \text{ETT}_{h_i}.$$

m: interference distance

$$\mathrm{EDJ}_{r(i)} = \left\{ \begin{array}{ll} \mathrm{ETT}_{h_k} & \text{if } i = k-1, \\ \mathrm{ETT}_{h_{i+1}} + \mathrm{EDJ}_{r(i+1)} & \\ \mathrm{if } \ \exists \ i+1 < j \leqslant \min \left\{i+m+1, \ k\right\} \\ \mathrm{such \ that} \ C_{h_{i+1}} = C_{h_j}, \\ \\ \mathrm{max} \left\{ \mathrm{ETT}_{h_{i+1}}, \ \mathrm{EDJ}_{r(i+1)} \right\} & \mathrm{else}, \end{array} \right.$$

AETD (adjusted expected transfer delay)

Algorithm

$$AETD = (1 - \alpha) \times ETD + \alpha \times EDJ$$

- Different from WCETT
 - consider the following circumstance

(b) a zigzag route

Fig. 1. Problem with the hop-distance-based interference model

Example

available	routing metrics			
routes	HOP	ETX	WCETT	AETD
[a-b-c-f]	3	3	$(1-\beta)\cdot 13+\beta\cdot 11$	$(1-\alpha)\cdot 13 + \alpha\cdot 11$
[a-b-c-d-f]	4	4	$(1-\beta)\cdot 5+\beta\cdot 3$	$(1-\alpha)\cdot 5 + \alpha\cdot 2$
[a-b-c-e-f]	4	4	$(1-\beta)\cdot 5+\beta\cdot 3$	$(1-\alpha)\cdot 5 + \alpha\cdot 3$
route selection	[a-b-c-f]	[a-b-c-f]	[a-b-c-d-f] or [a-b-c-e-f]	[a-b-c-d-f]

Performance Evaluation

Using QualNet simulator

- Impact of α
 - 2km*2km
 - -200nodes/km2

Fig. 4. Comparison of AETD with various α

Network Density & Network Size

Number of Available Channels

Fig. 7. Throughput comparison with various numbers of available channels

Conclusion

- A new AETD routing metric is proposed.
- The simulation results suggest the EDJ is a good indicator of channeldiversity level.
- The authors compare these methods finally.

