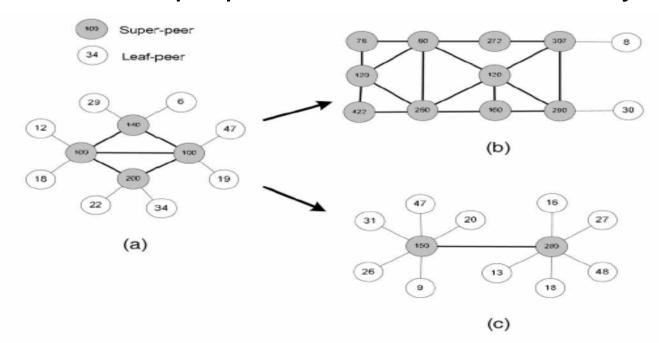
Dynamic Layer Management in Superpeer Architectures

Presented by 曾胤燁 2006/04/27

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
NOVEMBER 2005

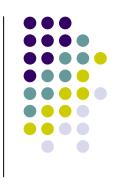
- Introduction
- Workload Model
- Dynamic Layer Management Algorithm (DLM)
- Performance Evaluation
- Conclusion



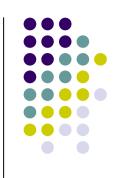
- Superpeer unstructured P2P systems have been found to be very effective by dividing the peers into two layers, super-layer and leaf-layer.
 - Message flooding is only conducted among superpeer.

- What is the optimal size ratio of leaf-layer to super-layer?
 - Too many superpeers pure P2P systems
 - Too few superpeers centralized P2P systems

- How can the optimal ratio be maintained?
- What types of peers should be elected to super-layer?



- Introduction
- Workload Model
- Dynamic Layer Management Algorithm (DLM)
- Performance Evaluation
- Conclusion



- n peers, n_l peers are leaf-peers
 n_s peers are superpeers
- Each leaf-peer connects to m superpeers.
- Each superpeer connects to k_s other superpeers and k_l leaf-peers.
- $\eta = n_l/n_s$ (layer size ratio)

- W_{on} the workload on the overall network W_{sp} the workload on a superpeer
- The workloads can be divided into three parts:
 - Connection Workload
 - Query Workload
 - Relay Workload

- CW is defined as the traffic overhead incurred to maintain the connections to the neighboring peers.
- CW is related to the size and stability of the neighboring peer set.

$$W_{sp_cw} = \frac{k_l}{t_l} + \frac{k_s}{t_s} = \frac{m\eta}{t_l} + \frac{k_s}{t_s}$$

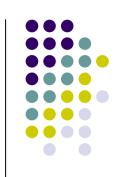
$$W_{on_cw} = \frac{n_l m}{t_l} + \frac{n_s}{t_s} (k_l + k_s) = \frac{mn\eta}{(1+\eta)t_l} + \frac{n(m\eta + k_s)}{(1+\eta)t_s}$$

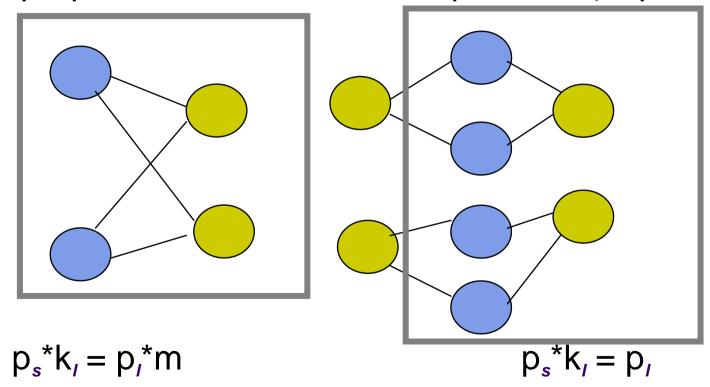
- W_{sp_cw} and W_{on_cw} : the portions of connection workload in W_{sp} and W_{on}
- t_I and t_s: the average lifetimes of neighboring leaf-peers and superpeers

- QW is defined as the traffic overhead incurred for a peer to process the queries generated by its leaf neighbors and itself.
- QW is proportional to the number of leaf neighbors and the query frequency.

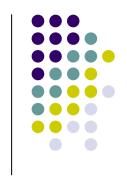
$$W_{sp_qw} = k_l f = m \eta f$$

$$W_{on_qw} = \frac{nm\eta f}{1+\eta}$$


- W_{sp_qw} and W_{on_qw} : the portions of query workload in W_{sp} and W_{on}
- f: the query frequency of a peer



 RW is defined as the traffic overhead incurred to process queries relayed form the superpeer neighbors.


To cover p peers, the number of superpeers that should be queried has a lower bound of $p/(1+k_l)$ and an upper bound of $mp/(m+k_l)$

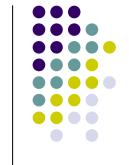
• A superpeer can be viewed to represent k_i +1peers.

Theorem 1

$$(p_s^*k_I) / m \le p_I \le p_s^*k_I$$

 $\Rightarrow p-p_s \le p_s^*k_I \le (p-p_s)m$
 $\Rightarrow p/(1+k_I) \le p_s \le mp/(m+k_I)$

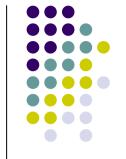
When $p_s << n_s$, p_s is very close to $p/(1+k_i)$


To cover $p_s = p/(1+k_l)$ superpeers, the number of query message range from $(p/(1+k_l))-1$ to $pk_s/(1+k_l)$

- The ideal search algorithm should only query each per once. Therefore, it can only use p_s-1 message.
- For an inefficient search algorithm, each link relays the same query at most twice.

The maximum number of links is $p_s*k_s/2$, so the maximum number of messages is p_sk_s

Theorem 2



Relay Workload

 Each peer initiates f queries per time unit and each superpeer receives (1+k,)f queries from itself and its leaf neighbors.

the query frequency of the total network $(1+k_I)n_s f$

 From theorem 2, the number of messages used by a query ranges from (p/(1+k_i))-1 to pk_s/(1+k_i)

Relay Workload

$$W_{on_rw(\min)} = (1 + k_l) n_s f\left(\frac{p}{1 + k_l} - 1\right) = n_s f(p - 1 - k_l)$$
$$= \frac{nf}{1 + \eta} (p - 1 - m\eta)$$

$$W_{on_rw(\text{max})} = n_s fpk_s = \frac{fpk_s n}{1+\eta}.$$

$$W_{sp_rw(\min)} = (p - 1 - m\eta)f$$
 and $W_{sp_rw(\max)} = fpk_s$.

$$Wsp_rw$$
 is $\frac{1}{n_s}$ of W_{on_rw}

Optimal Layer Size Ratio

•
$$W = W_{cw} + W_{qw} + W_{rw}$$

$$W_{sp(min)} = \frac{m\eta}{t_l} + \frac{k_s}{t_s} + m\eta f + (p - 1 - m\eta) f$$

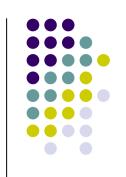
$$= \frac{m\eta}{t_l} + \frac{k_s}{t_s} + (p - 1) f$$

$$W_{on}(min) = \frac{mn\eta}{(1 + \eta)t_l} + \frac{n(m\eta + k_s)}{(1 + \eta)t_s} + \frac{nm\eta f}{1 + \eta}$$

$$+ \frac{nf}{1 + \eta} (p - 1 - m\eta)$$

$$= \frac{n}{1 + \eta} \left(\frac{m\eta}{t_s} + \frac{m\eta + k_s}{t_s} + fp - f \right).$$

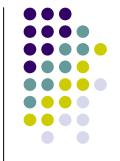
$$\begin{split} W_{sp(max)} &= \frac{m\eta}{t_l} + \frac{k_s}{t_s} + m\eta f + fpk_s \\ &= \left(\frac{1}{t_l} + f\right) m\eta + \frac{k_s}{t_s} + fpk_s, \\ W_{on(max)} &= \frac{mn\eta}{(1+\eta)t_l} + \frac{n(m\eta + k_s)}{(1+\eta)t_s} + \frac{nm\eta f}{1+\eta} + \frac{fpk_s n}{1+\eta} \\ &= \frac{n}{1+\eta} \left(\frac{m\eta}{t_l} + \frac{m\eta + k_s}{t_s} + m\eta f + fpk_s\right). \end{split}$$



$$W = \alpha W_{sp} + \beta \frac{W_{on}}{n} \tag{1}$$

• Since both Wsp and Won are functions of η ,by differentiating we can obtain optimal value η as

$$\eta' = \sqrt{\frac{B-C}{A}} - 1,$$

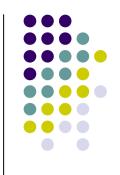

where, for the most efficient search algorithm,

$$A = \frac{m\alpha}{t_l}, B = \left(\frac{k_s}{t_s} + fp - f\right)\beta$$
, and $C = \left(\frac{1}{t_l} + \frac{1}{t_s}\right)m\beta$,

while, for the most inefficient search algorithm,

$$A = \left(\frac{1}{t_l} + f\right) m\alpha, B = \left(\frac{1}{t_s} + fp\right) k_s \beta, \text{ and}$$

$$C = \left(\frac{1}{t_l} + \frac{1}{t_s} + f\right) m\beta.$$


Dynamic layer management algorithm

- 1.Information Collection
- 2. Maintaining Appropriate Layer-Size-Ratio
- 3. Scaled Comparisons of Capacity and Age
- 4. Promotion or Demotion

1.Information Collection

- Peers exchange information with their superpeers to know their leaf neighbor number.
- Peers report their age and capacity to their superpeers.

2. Maintaining Appropriate Layer-Size-Ratio

- Due to the randomness of the neighbor selection mechanism in superpeer systems, the current numbers of leaf neighbors of superpeers can reflect the current layer size ratio.
- I_{nn} the leaf neighbors number

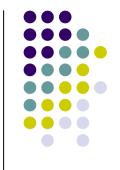
$$\bullet \qquad \mu = log(l_{nn}/k_1).$$

- μ > 0: too few superpeers
- μ < 0: too many superpeers

3. Scaled Comparisons of Capacity and Age

 For each peer that runs DLM, it uses two counting variables, Y_{capa}, Y_{age}.

```
for all peer d_i in G(d)


if (capacity(d_i)^*X_{capa} > capacity(d))

Y_{capa} + = 1/(\text{size of } G(d));

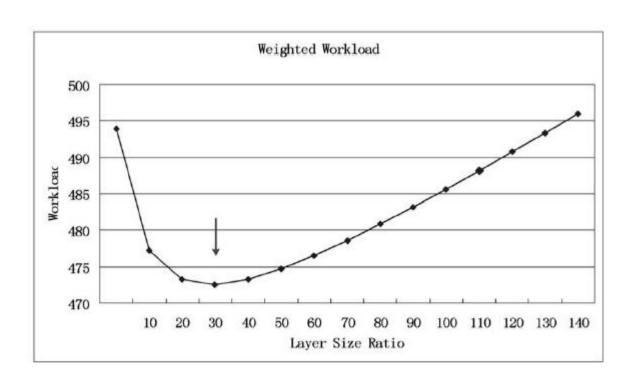
if (age(d_i)^*X_{age} > age(d))

Y_{age} + = 1/(\text{size of } G(d));
```

• The value of X_{capa} and X_{age} are adjusted according to the value of μ

4. Promotion or Demotion

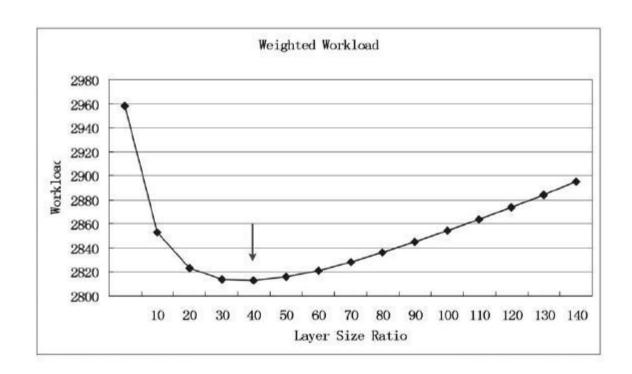

- We use tow threshold variable Z_{capa} , Z_{age} in the determination.
- For a leaf-peer, if Y_{age} and Y_{capa} are smaller than Z_{capa} and Z_{age} , it will be promoted.
- For a superpeer, if Y_{age} and Y_{capa} are lareger than Z_{capa} and Z_{age} , it will be demoted.



Performance Evaluation

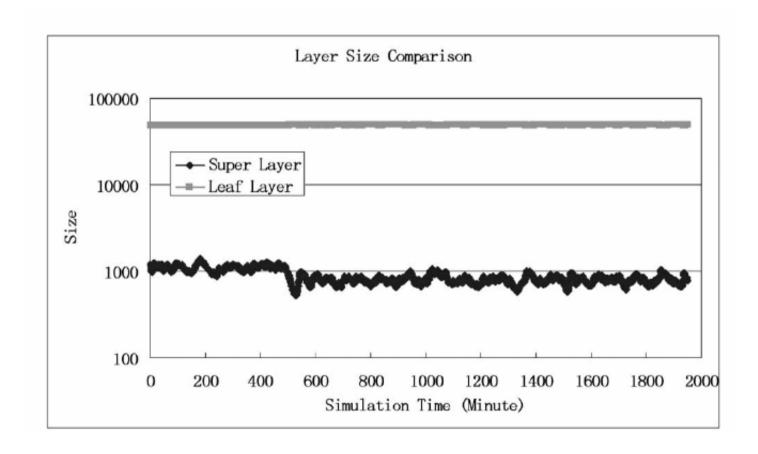
Simulation Parameters

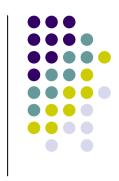
Parameter	Value	Description
n	50,000	Number of peers in the network
n_l	48,780	Number of preferred leaf-peers
n_s	1,220	Number of preferred super-peers
η	40.0	Layer size ratio
m	2	Number of super-peer neighbors of a leaf-peer
k_1	80	Average number of leaf-peer neighbors of a super-peers
k_s	3	Average number of super-peer neighbors of a super-peers
t_1	3.5	Average duration time of leaf-peers
t_s	50	Average duration time of super-peers
f	0.3	Average number of queries of a peer per minute
p	3,000	Number of covered peers to ensure some fixed success rate



Weighted workload of most efficient search ($\alpha=0.5, \beta=0.5$).

$$\eta_1' = \sqrt{\frac{B-C}{A}} - 1 \approx 38$$
,




Weighted workload of most inefficient search ($\alpha=0.5, \beta=0.5$).

$$\eta_1' = \sqrt{\frac{B-C}{A}} - 1 \approx 51$$

- In this paper, we purpose a workload model by analyzing the workload on one superpeer as well as on the total network.
- Based on this model, we can obtain an optimal layer size ratio.
- By DLM, we can adaptively elect peers and adjust them between superlayer and leaflayer.

Thank you[©]