
1

Performance of Full Text Search in
Structured and Unstructured

Peer-to-Peer Systems

INFOCOM 2006

Presented by C.L. Wang
2006/08/02

2

Outline

• Introduction
• Peer-to-Peer Full Text Search Systems
• Peer-to-Peer Network Searches

– Structured Networks
– Super-peer Networks
– Unstructured Networks

• Performance Comparison
• Conclusion

3

Introduction

• In full text keyword search the goal is to find text
documents that match keyword queries.

• Many techniques for matching queries and
documents have been developed in the field of
information retrieval (IR).

• Information retrieval techniques usually focus on
a centralized search server that either stores the
documents directly or processes searches over
documents stored at remote servers.

4

Introduction

• Peer-to-peer full text search systems are
decentralized and massively distributed, with no
“central server” per se.

• A peer-to-peer system may be chosen over a
centralized IR server for a number of reasons：
– the potential for massively parallel processing of

searches
– rapidly changing data that makes it difficult to keep a

central IR server up to date
– non-functional considerations (such as the

unwillingness of peers to relinquish control to a
central server)

5

Peer-to-Peer Full Text Search Systems

• It assumes the conjunctive query model, in
which “matching” documents must contain all of
the query terms.

• It evaluated both phases of full text keyword
searching: document publishing and query
processing.

• It measured the bandwidth used and the
response time for both phases.

6

Peer-to-Peer Full Text Search Systems

• The traditional approach for conducting full text
searches is to use an inverted index, which
stores for each term a list of documents
containing that term.

• Most searching operations can be efficiently
executed by intersecting or unioning the inverted
lists for different terms.

ti：term

Di：document

7

Peer-to-Peer Network Searches

• Structured peer-to-peer searches
– DHT (specifically, Chord)

• Bloom filter
• Caching

• Super-peer searches
• TTL

• Unstructured peer-to-peer searches
– Random-walk

• State-keeping
• Square-root topology

8

Structured Networks

• The way to implement full text search is to use
DHTs to store and retrieve inverted lists in a
Chord network.
– The “keys” inserted into the DHT would be the terms.
– The “values” inserted would be the associated

inverted lists.
• To conduct a search, it performs a lookup for

each query term to retrieve its inverted list, and
then intersect the inverted lists to obtain the list
of matching documents.

9

DHT-Document Publishing

• The inverted lists would be constructed incrementally by
“publishing” documents.

• Such publishing would take place when a peer joins the
network, or adds a new document to a collection.

• To publish a document, the peer must parse its
documents to extract the terms, and then send a
publish(term, documentID) message for each term.

• The DHT would route each publish message to the peer
responsible for the given term; this peer would then add
the document ID (and the ID of the peer holding the
document) to its inverted list for that term.

10

DHT-Document Publishing Example

• To publish a document d, the
publishing peer pd sends a
publish(ti, (d, pd)) message for
each distinct term ti in d.
– Ex：d9-t0,t2

• Chord routes the message to the
peer pti assigned to term ti.

• Peer pti adds the ID of document
d (and the peer ID pd) to the
inverted list of term ti.

11

DHT-Query Processing

• Discovery phase
– To answer a query with k terms, we first

determine which peers store the inverted lists
for those terms.

• Intersection phase
– Since we already know which peers hold each

inverted list, we only need to intersect each
inverted lists for different terms to find the
query result.

12

DHT-Query Processing Example

• After the discovery phase, p3
knows that the relevant
peers are p5, p6 and p1.

• After the Intersection phase,
query result is then returned
to the searching peer p3.

13

DHT with Bloom Filters

• To reduce the communication cost for an
intersection, we can use Bloom filters to
summarize the inverted lists.

A Bloom Filter with 4 hash functions. a Є A

Given a query a, we will
check bits at positions
h1(a), h2(a), ..., hk(a).

If any of them is 0 then a
is not in the set A

14

DHT with Bloom Filter Example

• B(ti) indicates a
Bloom filter
representing the
inverted list for
term ti.

• Bloom filters and
their intersections
are forwarded
between peers.

15

Bloom Filter with Caching

• Each peer caches the Bloom filters it received
during the processing of previous queries.

• Each cached Bloom filter that is used reduces
the number of hops needed, with a
corresponding decrease in bandwidth used.

16

Super-peer Networks

• In a super-peer network, each peer is classified
as either a “super-peer” or “leaf peer”.

• Each peer constructs a full inverted index over
their documents.

• This allows super-peers to process searches
over both their own content and the content of
their leaf peers.

17

Super-peer :Document Publishing

• A super-peer also has documents, and
constructs an inverted index.

• Leaf peers send a copy of their index to their
assigned super-peers during the “publishing”
phase.

• However, unlike leaf peers, super-peers handle
searches over their own content, and thus do not
need to explicitly “publish” their documents.

18

Super-peer : Query Processing

• When a query is issued from a leaf peer, it is first sent to
the super-peer.

• The super-peer both processes the query and forwards it
to other super-peer neighbors.

• The bandwidth required for processing queries consists
of the bandwidth needed to forward search messages
and return results.

• The response time of the query depends on the structure
of the connections between super-peers.

19

Super-peer with TTL

• Consider the time required for the search message
starting at super-peer p to reach all of the super-peers it
will be forwarded to.

• If the maximally distant super-peer (that is, the super-
peer the most hops away from p) is more than TTL hops
away, then the response time is bounded by the TTL;
otherwise, it is bounded by the number of hops to the
maximally distant super-peer.

• Therefore, the upper bound of the response time is
controlled by the user-defined TTL.

20

Unstructured Networks

• Random walk searches, reduce the bandwidth
used for searching, compared to Gnutella’s
original flooding protocol, by contacting a
random subset of the peers.

• Recall that in this technique, publishing is not
necessary; each peer stores, indexes and
processes searches over its own content.

21

Random walk : Query Processing

• With a random walk search, each peer that
receives a query processes it over its own
content, returns any results, and forwards it to n
random neighbors.

• The walk terminates when a user-specified
threshold T number of results have been found,
a user-specified TTL is reached, or some other
stopping condition is satisfied.

22

Efficient Structure for Random Walk

• State-keeping
– Each peer keeps track of who they forward

searches to, and avoid forwarding the same
search to the same neighbor repeatedly.

• Square-root topology
– Each peer tracks the popularity of its content,

and adjusts its degree (number of neighbors)
so that the degree is proportional to the
square root of the popularity of the content.

23

Performance Comparison

• Experimental Results
– DHT with Bloom filter and caching

• Document Publishing
• Query Processing

– Forwarding the query
– Answering the query

24

Experimental Results-DHT

• This shows the performance results using Bloom
filters and caching.

25

Document Publishing

26

Query Processing

27

Conclusion

• It has provided a quantitative evaluation and direct
comparison of structured and unstructured P2P systems
for full text search.

• Using real web documents and user queries, it has
examined the performance of the publishing and
searching phases of three different techniques.

• This results show that all three techniques use roughly
the same bandwidth to process queries.

	Performance of Full Text Search in�Structured and Unstructured �Peer-to-Peer Systems
	Outline	
	Introduction
	Introduction
	Peer-to-Peer Full Text Search Systems
	Peer-to-Peer Full Text Search Systems
	Peer-to-Peer Network Searches
	Structured Networks
	DHT-Document Publishing
	DHT-Document Publishing Example
	DHT-Query Processing
	DHT-Query Processing Example
	DHT with Bloom Filters
	DHT with Bloom Filter Example
	Bloom Filter with Caching
	Super-peer Networks
	Super-peer :Document Publishing
	Super-peer : Query Processing
	Super-peer with TTL
	Unstructured Networks
	Random walk : Query Processing
	Efficient Structure for Random Walk
	Performance Comparison
	Experimental Results-DHT
	Document Publishing
	Query Processing
	Conclusion

