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Introduction

• Hierarchical P2P networks (KaZaA)
– Try to reduce the flooding traffic by limiting the 

search scope within a small area of supernodes
– Current hierarchical designs select the ultrapeers by 

emphasizing their computing capabilities such as 
bandwidth, CPU power, and memory spaces.
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Heterogeneity of file sharing

• Seven percent of peers in the Gnutella network share 
more files than all of those other peers can offer and 
47 percent of queries are responded to by the top 1 
percent of peers.

• Some peers are more willing to share files than others.
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Heterogeneity of file sharing
- Response distribution

• Response distribution
– The top 1 percent of 

peers answers the main 
portion of queries.

– If we could route all 
the queries to those 
top peers first, close to 
90 percent of query 
traffic would have 
been saved.
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Heterogeneity of file sharing
- Number of shared files 

• Number of shared files 
– Very few peers share a large number of files.
– Some useless files make no contribution to the query 

answering, i.e., some files 
are never used to answer
the queries.
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Effective files

• To distinguish those files from useless files, we define 
the files which have been used to answer the queries as 
Effective Files.

• The peers sharing more
effective files have a 
greater tendency to 
answer queries.
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DiffSearch algorithm

• Overview of DiffSearch algorithm
• Selecting ultrapeers
• Finding ultrapeers
• Evolve an ultrapeer overlay 
• Maintaining the hierarchical structure
• Fully distributed operations 
• Load balance-Caching & Redirecting algorithm
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Overview of DiffSearch algorithm

• In the DiffSearch algorithm, a query consists of 
two round searches.
– In the first round search, the query is only sent to 

the ultrapeer overlay.
– If the first round search fails in the ultrapeer

overlay, the second round search will be evoked to 
query the entire network.
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Selecting ultrapeers

• The number of effective files shared by a peer is a good 
criterion to determine if the peer should be selected as 
an ultrapeer.

• By setting a threshold of 100 effective files, the top 2 
percent of peers are selected from 10,000 peers to 
form the ultrapeer overlay.
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Finding ultrapeers

• Passive approach
• Active approach
• The topology creation message hitchhiked on the 

query/response messages.
– One bit of data is appended to the reply message to 

indicate if the respondent is an ultrapeer.
– All of the replies received by isolated peers will be 

checked and the IP addresses will be extracted from 
the message sent from ultrapeers.
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Evolve an ultrapeer overlay

• To guarantee that each peer in the ultrapeer overlay
can be reached by the first round search in DiffSearch, 
all the peers in the ultrapeer overlay should form a 
connected topology.

• The basic approach is to detect all the separated 
clusters consisting of ultrapeers and connect them with 
each other.
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Evolve an ultrapeer overlay

• If peer a fails to search keyword k in cluster A during 
the first round search of DiffSearch
– The keyword k is not shared by ultrapeers.
– The file k is shared by ultrapeers, but they are 

located in separated clusters B or C.
• For any case, peer a will initiate the second round 

search to the whole network.
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Maintaining the hierarchical structure

• To hitchhike the overlay construction to the search 
messages, three bits need to be appended to the 
original query and reply messages.
– One bit is used in the query message to show 

whether the query is in the first round or second 
round.

– Two bits are used in the reply message to show 
whether the reply is from an ultrapeer and to which 
round search the reply is responding.
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Fully distributed operations

• Two round query operation of an individual peer.
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Fully distributed operations

• Query reply operation of an individual peer.
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Load balance-Caching & Redirecting algorithm

• Each ultrapeer overhears 
query reply messages and 
caches the IP addresses of 
other ultrapeers which are 
less loaded than itself.

• When a fully loaded 
ultrapeer cannot 
accommodate more 
incoming connection 
requests, it will redirect 
the requests to other 
ultrapeers in the caching 
list.
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Performance evaluation

• Convergence Speed
• Performance improvement

– Average Network Traffic
– Average Response Time
– Query success rate

• Load balance of ultrapeers
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Convergence Speed
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Average Network Traffic
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Average Response Time
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Query success rate
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Load balance of ultrapeers
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Conclusion

• In this paper, we propose the DiffSearch algorithm, a 
fully distributed approach which can evolve a two-tier 
hierarchical structure P2P network.

• By hitchhiking the topology operations to query/ reply 
messages and prompting content-rich peers to the 
ultrapeer overlay, the DiffSearch algorithm can achieve 
significant performance improvement with a little 
overhead on topology maintenance and index 
operations.
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