
1

An Effective P2P Search Scheme to
Exploit File Sharing Heterogeneity

From IEEE Transactions on Parallel
and Distributed System, February 2007

Presented by Ching-Lan Wang
January 25, 2007

2

Outline

• Introduction
• Heterogeneity of file sharing

– Response distribution
– Number of shared files

• DiffSearch algorithm
• Performance evaluation
• Conclusion

3

Introduction

• Hierarchical P2P networks (KaZaA)
– Try to reduce the flooding traffic by limiting the

search scope within a small area of supernodes
– Current hierarchical designs select the ultrapeers by

emphasizing their computing capabilities such as
bandwidth, CPU power, and memory spaces.

4

Heterogeneity of file sharing

• Seven percent of peers in the Gnutella network share
more files than all of those other peers can offer and
47 percent of queries are responded to by the top 1
percent of peers.

• Some peers are more willing to share files than others.

5

Heterogeneity of file sharing
- Response distribution

• Response distribution
– The top 1 percent of

peers answers the main
portion of queries.

– If we could route all
the queries to those
top peers first, close to
90 percent of query
traffic would have
been saved.

6

Heterogeneity of file sharing
- Number of shared files

• Number of shared files
– Very few peers share a large number of files.
– Some useless files make no contribution to the query

answering, i.e., some files
are never used to answer
the queries.

7

Effective files

• To distinguish those files from useless files, we define
the files which have been used to answer the queries as
Effective Files.

• The peers sharing more
effective files have a
greater tendency to
answer queries.

8

DiffSearch algorithm

• Overview of DiffSearch algorithm
• Selecting ultrapeers
• Finding ultrapeers
• Evolve an ultrapeer overlay
• Maintaining the hierarchical structure
• Fully distributed operations
• Load balance-Caching & Redirecting algorithm

9

Overview of DiffSearch algorithm

• In the DiffSearch algorithm, a query consists of
two round searches.
– In the first round search, the query is only sent to

the ultrapeer overlay.
– If the first round search fails in the ultrapeer

overlay, the second round search will be evoked to
query the entire network.

u

u

u

u

10

Selecting ultrapeers

• The number of effective files shared by a peer is a good
criterion to determine if the peer should be selected as
an ultrapeer.

• By setting a threshold of 100 effective files, the top 2
percent of peers are selected from 10,000 peers to
form the ultrapeer overlay.

11

Finding ultrapeers

• Passive approach
• Active approach
• The topology creation message hitchhiked on the

query/response messages.
– One bit of data is appended to the reply message to

indicate if the respondent is an ultrapeer.
– All of the replies received by isolated peers will be

checked and the IP addresses will be extracted from
the message sent from ultrapeers.

12

Evolve an ultrapeer overlay

• To guarantee that each peer in the ultrapeer overlay
can be reached by the first round search in DiffSearch,
all the peers in the ultrapeer overlay should form a
connected topology.

• The basic approach is to detect all the separated
clusters consisting of ultrapeers and connect them with
each other.

13

Evolve an ultrapeer overlay

• If peer a fails to search keyword k in cluster A during
the first round search of DiffSearch
– The keyword k is not shared by ultrapeers.
– The file k is shared by ultrapeers, but they are

located in separated clusters B or C.
• For any case, peer a will initiate the second round

search to the whole network.

14

Maintaining the hierarchical structure

• To hitchhike the overlay construction to the search
messages, three bits need to be appended to the
original query and reply messages.
– One bit is used in the query message to show

whether the query is in the first round or second
round.

– Two bits are used in the reply message to show
whether the reply is from an ultrapeer and to which
round search the reply is responding.

15

Fully distributed operations

• Two round query operation of an individual peer.

16

Fully distributed operations

• Query reply operation of an individual peer.

17

Load balance-Caching & Redirecting algorithm

• Each ultrapeer overhears
query reply messages and
caches the IP addresses of
other ultrapeers which are
less loaded than itself.

• When a fully loaded
ultrapeer cannot
accommodate more
incoming connection
requests, it will redirect
the requests to other
ultrapeers in the caching
list.

18

Performance evaluation

• Convergence Speed
• Performance improvement

– Average Network Traffic
– Average Response Time
– Query success rate

• Load balance of ultrapeers

19

Convergence Speed

20

Average Network Traffic

21

Average Response Time

22

Query success rate

23

Load balance of ultrapeers

24

Conclusion

• In this paper, we propose the DiffSearch algorithm, a
fully distributed approach which can evolve a two-tier
hierarchical structure P2P network.

• By hitchhiking the topology operations to query/ reply
messages and prompting content-rich peers to the
ultrapeer overlay, the DiffSearch algorithm can achieve
significant performance improvement with a little
overhead on topology maintenance and index
operations.

	An Effective P2P Search Scheme to Exploit File Sharing Heterogeneity
	Outline
	Introduction
	Heterogeneity of file sharing
	Heterogeneity of file sharing�- Response distribution
	Heterogeneity of file sharing�- Number of shared files
	Effective files
	DiffSearch algorithm
	Overview of DiffSearch algorithm
	Selecting ultrapeers
	Finding ultrapeers
	Evolve an ultrapeer overlay
	Evolve an ultrapeer overlay
	Maintaining the hierarchical structure
	Fully distributed operations
	Fully distributed operations
	Load balance-Caching & Redirecting algorithm
	Performance evaluation
	Convergence Speed
	Average Network Traffic
	Average Response Time
	Query success rate
	Load balance of ultrapeers
	Conclusion

