Supporting QoS in IEEE 802.11e Wireless LANs

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2006

> Presented by T.C. Lin 24 January 2007

Outline

 Introduction Analytical Model Call Admission Control I Call Admission Control II Rate Control Simulation Conclusion References

Introduction

Channel Access methods in IEEE 802.11e:
Hybrid Coordination Function (HCF)
Enhanced Distributed Channel Access (EDCA)
Contention-based
HCF controlled channel access (HCCA)
Polling-bsed

 The EDCA cannot guarantee strict QoS required by real-time services without proper network control mechanisms.

Introduction (Cont.)

- To overcome this deficiency, the author proposes
 - Aalytical model
 - to derive an average delay estimate for the traffic of different priorities in the unsaturated 802.11e WLAN
 - Two call admission control schemes
 - A rate control scheme
 - relies on the average delay estimates and the channel busyness ratio

Introduction (Cont.)

Key idea:

- When accepting a new real-time flow, the admission control algorithm considers its effect on the channel utilization and the delay experienced by existing realtime flows.
- At the same time, the rate control algorithm allows the best effort traffic to fully use the residual bandwidth left by the real-time traffic, thereby achieving high channel utilization.

				AC	CWmin	CWmax	AIFSN
Back AIFS BO[Back AIFS BO[Back AIFS BO[Back AIFS BO[AC_BK	aCWmin	aCWmax	7
9 [0] 9ff	1 (I off	off [2]	3] 3]	AC_BE	aCWmin	aCWmax	3
Virtual Collision Handler				AC_VI	(aCWmin+1)/2 – 1	aCWmin	2
Transmission Attempt				AC_VO	(aCWmin+1)/4 – 1	(aCWmin+1)/2 - 1	2

EDCA (Cont.)

Markov Chain Model for the IEEE 802.11e

- Define Wi,0 = CWi,min.
- At different backoff stage $j \in (0, \alpha)$, where α is the maximum number of retransmissions, the contention window size

$$W_{i,j} = \begin{cases} 2^{j} W_{i,0} & if \ 0 \leqslant j \leqslant m \\ 2^{m} W_{i,0} & if \ m < j \leqslant \alpha \end{cases}$$

- Let pi denote the probability of collision seen by a transmitted packet from queue i.
- We define b(i, t) as a stochastic process representing the value of the backoff counter at time t, and s(i, t) as a stochastic process representing the backoff stage j, where 0 ≤ j ≤ α.

Markov chain for the 802.11e backoff procedure

Markov Chain Model for the IEEE 802.11e (Cont.)

 The probability that a node of priority i transmits in a random slot, given that the queue is not empty:

$$\tau_{i} = \sum_{j=0}^{\alpha} b_{j,0} = \begin{cases} \frac{2(1-2p_{i})(1-p_{i}^{\alpha+1})}{W_{i,0}(1-(2p_{i})^{\alpha+1})(1-p_{i})+(1-2p_{i})(1-p_{i}^{\alpha+1})} & \alpha \leqslant m \\ \frac{2(1-2p_{i})(1-p_{i}^{\alpha+1})}{W_{i,0}(1-(2p_{i})^{m+1})(1-p_{i})+(1-2p_{i})(1-p_{i}^{\alpha+1})+W_{i,0}2^{m}p_{i}^{m+1}(1-2p_{i})(1-p_{i}^{\alpha-m})} & \alpha > m \end{cases}$$

 The probability of collision seen by a transmitted packet from queue i:

$$p_i = 1 - \prod_{l=0}^{i-1} (1 - (1 - P_{l,0})\tau_l)^{n_l} (1 - (1 - P_{i,0})\tau_i)^{n_i-1} \prod_{l=i+1}^3 (1 - (1 - P_{l,0})\tau_l)^{n_l}$$

G/G/1 Queue Model to Estimate Mean Delay

- We model a priority i queue as a G/G/1 system.
- An upper bound for the average waiting time in the queue:

 $W_i \leqslant \frac{\lambda(\sigma_{A_i}^2 + \sigma_{B_i}^2)}{2(1 - \rho_i)}$ σ_{Ai}^2 - variances of the interarrival time

- Pi traffic intensity
- $\sigma_{\rm Bi}^2$ variances of service time Average packet delay = average waiting time + average MAC service time

$$T_{i} = \frac{\lambda_{i}(\rho_{i}^{2}\sigma_{A_{i}}^{2} + \sigma_{B_{i}}^{2})}{2(1 - \rho_{i})} + 1/\mu$$

Model Validation – Simulation Setting

- 100 mobile nodes
- Channel rate: 2 Mb/s
- Voice Traffic (VBR)
 - On/off source with exponentially distributed on and off periods of 300 ms average each
 - Packet generating rate: 32 kb/s
 - Packet size: 160 bytes
 - Inter-packet time: 40 ms
- Video Traffic (CBR)
 - Packet generating rate: 64 kb/s
 - Packet size: 1000 bytes

• AIFS[2] = 60 μ s, AIFS[3] = 50 μ s, W2,0 = 32, and W3,0 = 16

Model Validation

Average Delay Model

- As specified in [1] [2], when we keep the network working in the unsaturated case, the delays for both traffic classes are sufficiently small to satisfy their QoS requirements
 - Unsaturated case
 - Not all the nodes are contending for the channel at the same time.
 - Low collision probability
 - One way transmission delay for VoIP
 - 150ms, and must be less than 400ms

Call Admission & Rate Control

Traffic Type	Delay Requirement	Bandwidth Usage	Traffic Control Mechanism
Real-time	strict	not greedy	Call admission control (CAC)
Non-real- time	tolerable	greedy	Rate control (RC)

Channel Utilization

Denoted by cu

 Defined as the portion of the time that the channel is used for successful transmissions in an observation period

Call Admission Control I

 Three parameters are used to characterize the bandwidth requirement of a real-time flow

- Rmean: average data rate
- Rpeak: peak data rate (bit/s)
- *PKI:* average packet length (bits)
- A successful transmission time, denoted by *Tsuc*, is obtained by
 - Tsuc = RTS + CTS + DATA + ACK +3SIFS + AIFS, where DATA is the average packet transmission time for the packet of length PKI

 The channel utilization cu corresponding to a flow's bandwidth requirement as follows:

$$cu = \mathcal{U}(R) = \frac{R}{PK_l} \times T_{suc}$$

where U is the mapping function from the traffic rate to the channel utilization

 Thus, a flow's bandwidth requirement can be translated into (cumean, cupeak), where cumean = U(Rmean) and cupeak = U(Rpeak).

 The coordinator records the total channel utilization due to all admitted real-time flows into two parameters (cuA,mean, cuA,peak), i.e., the aggregate (cumean, cupeak).
 Meanwhile, the coordinator maintains the

number of flows belong to AC i, denoted by ni.

Obtains (cui,mean, cui,peak)

• Second, estimate the average delay using the G/G/1 model.

$$\overline{D_i} \leqslant D_i \quad i = 2, 3$$

 If both of the above conditions are satisfied, the new flow is admitted, otherwise it is rejected.

Remark

 When making admission decisions, CAC scheme I takes into account both the peak rate and mean rate for the real-time traffic.

 While this ensures that the network will not be congested in the worst-case scenario, in which all the VBR real-time traffic transmits at its peak rate.

Problem

 When many real-time flows with the ratio Rpeak/Rmean is large are admitted, channel utilization will be low.

Call Admission Control II

The coordinator grants admission if the following test is passed:

cui, mean cuA,mean +**CUrt**

Remark on Call Admission Control

 It can be seen that there exists a tradeoff between strict QoS guarantee and the number of real-time flows that can be accepted.

 A better balance is to obtain the knowledge about the rate-changing pattern of VBR flows.

• It is very hard.

Channel Busyness Ratio

- Denoted by $rb \in [0, 1]$
- ◆ Defined as the portion of the time that the channel is busy in an observation period
 ◆ cu ≤ rb

Rate Control

Each node needs to monitor the channel busyness ratio rb during a period of Trb.
The node thus adjusts Rbe after each Trb according to the following:

$$R_{be_{new}} = R_{be_{old}} \times \frac{CU_{max} - r_{br}}{r_b - r_{br}}$$

• *Rbe:* the data rate of the best effort traffic

• *rbr:* real-time

rb

 The node increases the rate of the best effort traffic if rb < CUmax and decreases the rate otherwise.

Rate Control (Cont.)

- To estimation of *rbr*, each mobile node needs to decode the MAC header part.
 - The observed channel busyness ratio rb comprises
 - *rb*1:from the best effort traffic with a decodable MAC header
 - rb2: from the real-time traffic with a decodable MAC header
 - *rb*3: all the traffic with an undecodable MAC header due to collision

Rate Control (Cont.)

 Give an upper bound and a lower bound for *rbr* as follows:

$$r_{b2} \leqslant r_{br} \leqslant r_{b2} + r_{b3}$$

 To enforce a conservatively increasing and aggressively decreasing law, we thus set rbr as follows:

$$r_{br} = \begin{cases} r_{b2}, & if \ r_b < CU_{max} \\ r_{b2} + r_{b3}, & if \ r_b > CU_{max} \end{cases}$$

Simulation

- 100 mobile nodes
- Channel rate: 2 Mb/s
- CUmax = 0.93
- CUrt = CUmax * 80% = 0.744
 Trb = 2s
- D2 = 200ms, D3 = 100ms

Traffic Type	Voice	Video	ТСР
AC i	3	2	0
AIFS (us)	50	60	80
Wi,O	16	32	128

Aggregate Throughput

Channel busyness ratio & Channel utilization

Average Delay

Conclusion

 In this paper, we enhance the 802.11e by proposing two call admission schemes and a rate control scheme.

 Finally, the simulation results show that the proposed schemes successfully guarantee stringent QoS requirements of real-time services, while achieving high channel utilization.

References

 [1] ITU-T G.114. One-way transmission time, 1996.

[2] ITU-T G.1010. End-user multimedia QoS categories, 2001.