
1

A Distributed Adaptive Cache
Update Algorithm for the
Dynamic Source Routing Protocol

INFOCOM 2005

Presented by Tsung-Yuan Hsu

2

Outline

Introduction
Dynamic Source Routing Protocol
Problem Statement
Definition of Cache Table
Distributed Cache Update Algorithm
Performance Evaluation
Conclusion

3

Introduction

Due to mobility, cached routes easily become
stale.

Using stale routes causes packet losses and
increases latency and overhead.

Authors investigate how to make on-demand
routing protocols adapt quickly to topology
changes.

4

Dynamic Source Routing Protocol

DSR consists of two on-demand mechanisms : Route
Discovery and Route Maintenance.
Route Discovery
Route Maintenance

A B C D E
RouteRequest RouteRequest RouteRequest

RouteReplyRouteReply RouteErrorRouteError

RouteRequest

RouteReplRouteReply y

5

Problem Statement

On-demand Route Maintenance results in
delayed awareness of mobility: a node is not
notified when a cached route breaks until it
uses the route to send packets.

6

Definition of Cache Table
A cache table has no capacity limit.

Route: It stores the links starting from the current
node to a destination or from a source to a
destination.
SourceDestination: It is the source and destination
pair.
DataPackets: It records whether the current node
has forwarded 0, 1, or 2 data packets.
ReplyRecord: This field may contain multiple
entries. Each entry records the neighbor to which
a Route Reply is forwarded and the route starting
from the current node to a destination.

7

Definition of Cache Table
Example

A B C D E

Route S-D DP ReplyRecord

E A E 0 D <- E

DE A E 0 C <- DE

CDE A E 0 B <- CDE

BCDE A E 0 A <- BCDE

ABCDE A E 0

ABCDE A E 1 ABCDE A E 1 ABCDE A E 1 ABCDE A E 1ABCDE A E 1

I H

GF

ABCDE A E 1 G <- CDE I <- CBA ABCDE A E 1

FGCDE F G 1
HICBA H A 1

H -> A

F -> E

8

Distributed Cache Update Algorithm

We define a broken link as a forward or
backward link.

Forward link: The flow using the route
crosses the link in the same direction as
the flow detecting the link failure.
Backward link: Otherwise.

9

Distributed Cache Update Algorithm

If a route contains a forward link
If DataPackets is 0, then no downstream node needs to be notified,
because the downstream nodes did not cache the link when
forwarding a Route Reply.
If DataPackets is 1 or 2, then the upstream nodes need to be
notified, because at least one packet has traversed the route and
therefore the upstream nodes have cached the broken link.
If DataPackets is 2, then the downstream nodes need to be notified,
because at least two data packets have traversed the route and
thus the downstream nodes have cached the link.
If DataPackets is 1 and the route is different from the source route
in the packet, then the downstream nodes need to be notified,
because the downstream nodes cached the link when the first data
packet traversed the route.
If DataPackets is 1 and the route is the same as the source route in
the packet, then no downstream node needs to be notified,
because the first data packet cannot be delivered and therefore the
downstream nodes did not cache the link through forwarding
packets with this route.

10

Distributed Cache Update Algorithm

If a route contains a backward link
Both downstream and upstream nodes
need to be notified, because the route has
been cached in the nodes.

11

Distributed Cache Update Algorithm

If the link is a forward link
The node is upstream to it, then the algorithm notifies
upstream neighbor.
The node is downstream to it, then

1. If the node is the other endpoint of the link, then notify its
downstream neighbor.

2. If the node is the destination, then notify its upstream
neighbor.

3. Otherwise, notify both upstream and downstream neighbors.

Backward link vice versa.

12

Distributed Cache Update Algorithm

After notifying the upstream and/or
downstream neighbors, the algorithm
checks the ReplyRecord field.
If an entry contains a broken link, the
algorithm notifies the neighbor that
learned the link, then removes the table
entry containing the broken link.

13

Distributed Cache Update Algorithm

Example 1

14

Distributed Cache Update Algorithm

Example 2

15

Performance Evaluation
Packet Delivery Ratio & Packet Delivery Latency

16

Performance Evaluation
Packet overhead & Normalized Routing Overhead

17

Conclusions

Authors defined a new cache structure called
a cache table to maintain the information
necessary for cache update.
Based on the local information kept by each
node, the distributed cache update algorithm
disseminate the broken link information to all
reachable nodes that have that link in their
caches.
Therefore, the algorithm enables DSR to
adapt quickly to topology changes.

	A Distributed Adaptive Cache Update Algorithm for the Dynamic Source Routing Protocol
	Outline
	Introduction
	Dynamic Source Routing Protocol
	Problem Statement
	Definition of Cache Table
	Definition of Cache Table
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Distributed Cache Update Algorithm
	Performance Evaluation
	Performance Evaluation
	Conclusions

