Bandwidth Aggregation for Real-time Application in Heterogeneous Wireless Networks

IEEE Transactions on Mobile Computing 2006

2006/05/18 Presented by Tsung-Yuan Hsu

Outline

- Introduction
- Architecture
- Scheduling algorithm : Earliest Delivery Path First (EDPF)
- Properties of EDPF
- Evaluation
- Conclusion

Introduction

- A variety of wireless interfaces are available for today's mobile user to access Internet content.
- When coverage areas of these different technologies overlap, a terminal equipped with multiple interfaces can use them simultaneously to improve the performance of its applications.
- An important aspect of the architecture when providing BAG services for real-time applications is the scheduling algorithm that partitions the traffic onto different interfaces such that the QoS requirements of the application are met.
 - Earliest Delivery Path First (EDPF)

Architecture

Architecture

- Profile Manager/Server : interfaces, scheduling, additional functionality
- Access Manager/Selection: selects interface based on the profile or scheduling algorithm
- Mobility Manager/Server : register, address acquire
- Traffic Manager : scheduling algorithm

Earliest Delivery Path First (EDPF)

The overall idea behind EDPF

- Take into consideration the overall path characteristics between the proxy and the MH delay, as well as the wireless bandwidth.
- 2. Schedule packets on the path which will deliver the packet at the earliest to the MH.

Earliest Delivery Path First (EDPF) Base-Station1 Network Proxy D1 ➡ B. MH $d_i^l = MAX(a_i + D_l, A_l) + L_i/B_l$ Base-Station2 B_a D_3 Base-Station3 D₁: the one-way wireline delay associated with the path (between the proxy and Base Station) B₁: the bandwidth negotiated at the BS A_{I} : the time of the wireless channel becomes available for the next transmission at the BS • a: the arrival instance of the ith packet (at the proxy) L_i : the size of the packet This packet when scheduled on path I would arrive at the MH at d_i^t .

7

Earliest Delivery Path First (EDPF)

$$d_{i}^{l} = MAX(a_{i} + D_{l}, A_{l}) + L_{i}/B_{l}$$

$$Base-Station1$$
Network Proxy
$$D_{2}$$

$$Base-Station2$$

$$D_{3}$$

$$Base-Station3$$

$$Base-Station3$$

$$Base-Station3$$

$$Base-Station3$$

- The first component computes the time at which transmission can begin at the BS.
- The second component computes the packet transmission time.

• Example

$$d_i^l = MAX(a_i + D_l, A_l) + L_i/B_l$$
• L=100bits, D1=3s, A1=4s, B1=20bps
• d1=max(3,4)+100/20=4+5=9
• d2=max(5,2)+100/10=5+10=15
• The delivery path is path1.

- When packets are of constant size, it is easy to see that with EDPF, they will arrive in order at the client.
 - Consider two packets {i,j : j>i}
 - Packet j may arrive before i only if it were scheduled on a different link.
 - the link on which j was transmitted delivers packets the earliest, EDPF when scheduling i would have picked that link for its transmission.
 - Thus, packets will always arrive in order.

- When packets are of variable size, it is important that the scheduling algorithm distribute the bits across the links properly.
- we can say the algorithm achieves good bandwidth aggregation if the maximum difference between the normalized bits allocated to any two pairs of links m; n is at most a constant.
- The constant should not be a function of the number of packets.

• For EDPF, given P packets to transmit, the maximum difference between the normalized bits allocated to any two pairs of links m; n is upper bounded by Lmax.

$$max_{m,n} \left| \frac{Sent_m}{w_m} - \frac{Sent_n}{w_n} \right| \le L_{max}$$

- Lmax : the maximum packet size
- Sent : the total number of bits sent on the link
- W: the weight of the link (W=B/Bmin)

$$\left|\frac{Sent_m}{w_m} - \frac{Sent_n}{w_n}\right| = \left|\frac{T_m(t) * B_m}{w_m} - \frac{T_n(t) * B_n}{w_n}\right| = [\mathsf{Tm}(t) - \mathsf{Tn}(t)] * \mathsf{Bmin}$$

- T(t) is in essence the time at which a packet arriving at time t can begin transmission on link.
- T(t) would essentially indicate the overall time for which the link was used for transmission.
- Therefore, T(t) * B would be the total number of bits sent on the link.
- B/W=Bmin ('.' W=B/Bmin)
- The difference between the Ts cannot exceed Lmax/Bmin.

Evaluation

Streaming video

Buffering Time (in Seconds) for Continuous Playback

Algo./	Lecture	Star Trek	Star Wars	Susi & Strolch
Video	$\langle 58, 690 \rangle$	$\langle 69, 1200 \rangle$	$\langle 53, 940 \rangle$	$\langle 79,1300\rangle$
EDPF	2.3	3.1	2.9	4.6
HBI	7.9	8	8.3	8.6

• HBI (Highest Bandwidth Interface)

Evaluation

Evaluation

 If the MH provides EDPF with additional information such as maximum tolerable delay, EDPF can drop packets that are unlikely to meet their delay

Conclusions

- The authors use multiple interfaces simultaneous with EDPF.
- When packets are of constant size, they will arrive in order at the client.
- When packets are of variable size, the maximum difference between the normalized bits allocated to any two pairs of links m; n is upper bounded by a constant (Lmax).