PDA: Privacy-preserving Data Aggregation in Wireless Sensor Networks

IEEE INFOCOM, 2007

Presented by Chia-Yi Lien January 3, 2008

Outline

Introduction

- Model and Background
- Private Data Aggregation Protocols
- Evaluation
- Conclusion

Introduction (1/2)

- Providing efficient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research.
- The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy.

Introduction (2/2)

- To the best of our knowledge, this paper is among the first on privacy-preserving data aggregation in wireless sensor networks.
- In this paper, we focus on additive aggregation functions, that is, $f(t) = \sum_{i=1}^{N} d_i(t)$

d_i(t) is the individual sensor reading at time t for node i

Model and Background

Desirable characteristics of a private data aggregation scheme

Privacy

Each node's data should be only known to itself

- Efficiency
 - A good private data aggregation scheme should keep the overhead which is introduced to protect privacy as small as possible

□ Accuracy

Private Data Aggregation Protocols

- Cluster-based Private Data Aggregation (CPDA)
 Advantage: less communication overhead
- Slice-Mix-AggRegaTe (SMART)
 Advantage: less computation overhead
- When there is no packet loss, in both CPDA and SMART, the sensor network can obtain a precise aggregation result while guaranteeing that no private sensor reading is released to other sensors.

CPDA

it guarantees that no individual node knows the data values of other nodes.

CPDA consists of three phases

Cluster formation

- A sensor elects itself as a cluster leader with a probability $p_{\rm c}$
- Calculation within clusters
- □ Cluster data aggregation

Cluster formation

(a) Query Server Q triggers a query by *HELLO* message. A recipient of *HELLO* message elects itself as a cluster leader randomly.

(b) A and X become cluster leader, so they broadcast the *HELLO* message to their neighbors.

(c) Node E receives multiple *HELLO* messages, then E randomly selects one to join.

(d) Several clusters have been constructed and the aggregation tree of cluster leaders is formed

Calculation within clusters

Node A: $v^A = a + r^A r + r^A r^2$	$NodeB: v_A^B$	=	$b + r_1^B x + r_2^B x^2,$
Node A. $v_A = a + v_1 x + v_2 x$,	v_B^B	=	$b + r_1^B y + r_2^B y^2,$
$v_B^{\prime a} = a + r_1^{\prime a} y + r_2^{\prime a} y^2,$	v_C^B	=	$b + r_1^B z + r_2^B z^2$.
$v_C^A = a + r_1^A z + r_2^A z^2,$	0		1 2
$E = a^A + a^B + a^C = (a + b + a) + a^2 + a^2$	$NodeC: v_A^C$	=	$c + r_1^C x + r_2^C x^2,$
$F_A = v_A + v_A + v_A = (a + b + c) + r_1 x + r_2 x ,$	v_B^C	=	$c+r_1^Cy+r_2^Cy^2,$
$F_B = v_B^A + v_B^B + v_B^C = (a+b+c) + r_1y + r_2y^2,$	v_C^C	=	$c + r_1^C z + r_2^C z^2$.
$F_C = v_C^A + v_C^B + v_C^C = (a+b+c) + r_1 z + r_2 z^2.$	_		_

Cluster data aggregation

Each cluster leader routes the derived sum within the cluster back towards the query server through a TAG routing tree rooted at the server

SMART (1/2)

- each node hides its private data by slicing it into pieces and sending encrypted data slices to different aggregators.
- Then the aggregators collect and forward data to a query server (sink).
- When the server receives the aggregated data, it calculates the final aggregation result.

SMART (2/2)

- Three Steps: slicing, mixing, aggregation
- Slicing
 - □ Each node randomly selects a set of nodes (J=|Si|) within *h* hops
 - One of the J pieces is kept at node *i* itself. The remaining J–1 pieces are encrypted and sent to nodes in the randomly selected set S_i

SMART - Slicing

(a) Slicing $(J = 3, h = 1): d_{ij} (i \neq j)$ is encrypted and transmitted from node *i* to *j*, where $j \notin S_i$. d_{ii} is the data piece kept at node *i*.

SMART - Mixing

(b) Mixing: Each node *i* decrypts all data pieces received and sums them up including the one kept at itself (d_{ii}) as r_i .

SMART – Aggregation

(c) Aggregation (No encryption is needed)

Evaluation

Compare with a commonly used data aggregation scheme – TAG (Tiny AGgregation), where no data privacy protection is provided

Privacy-preservation Efficacy

17

Communication Overhead (1/3)

- Epoch duration is the amount of time for the data aggregation procedure to finish
- In TAG, each node needs to send 2 messages for data aggregation: one Hello message to form an aggregation tree, and one message for data aggregation.
- 3+p_c is the average number of messages sent by a node in CPDA. Thus, the overhead in CPDA is less than twice as that in TAG.
- SMART, with J = 3, needs to exchange 2 messages during the slicing step and 2 messages for data aggregation. Therefore, the overhead of SMART is double that of TAG.

Communication Overhead (2/3)

(a) Comparison of TAG, CPDA ($p_c = 0.3$) and SMART (J=3).

Communication Overhead (3/3)

(b) Communication overhead of CPDA with respect to p_c .

(c) Communication overhead of SMART with respect to J.

Accuracy (1/2)

(a) Accuracy comparison of TAG, CPDA ($p_c = 0.3$) and SMART (J=3).

Accuracy (2/2)

Conclusion

- CPDA and SMART use data-hiding techniques and encrypted communication to protect data privacy
- We propose two private-preserving data aggregation schemes – CPDA, and SMART – focusing on additive data aggregation functions.

	CPDA	SMART
Privacy preservation effi-	Excellent	Excellent $(J \ge 3)$
cacy		
Communication overhead	Fair	Large
Aggregation accuracy	Good (but sensi-	Good (not sensi-
	tive to p_c)	tive to J)
Computational overhead	Fair	Small

PERFORMANCE COMPARISON OF CPDA AND SMART