Data Dissemination with
Ring-Based Index for

Wireless Sensor
NEIWIE

IEEE TRANSACTIONS ON
MOBILE COMPUTING

Presented by Chia-Yi Lien
May 15, 2008

» I
Outline

m |ntroduction

m The Index-based Data Dissemination

m An Adaptive Ring-based Index (ARI) Scheme
m Enhancements

m Performance Evaluations

m Conclusions

Introduction

m Scenario

A large amount of sensing data are generated,
but only a small portion of them will be
gueried by users

" I
The Index-based Data
Dissemination

Sink

Step 1: query for index

Step 3: response

Storing node (Source)
and detecting node »T arget
@)

"
An Adaptive Ring-based Index (ARI)
Scheme

m Goal

Fault tolerance
Load balance
Efficiency

Initializing an index ring

~ Index ring

~m —O—{}—0—0
] e []
| L(H(k))
& i
O—O— {X@
® Index center \
| Index node [\)

O Forwarding node Storing node (Source)

Query an index (1/3)

O Forwarding node Storing node (Source)

" J
Query an index (2/3)

Storing node (Source)

" J
Query an index (3/3)

1. Being forwarded
to the index center.
2. Being forwarded
in the reversed
direction.

3. Being interce
and forwarded along
the ring.

4. Being forwared
to the storing node.
5. Response is

sent to the sink.

Storing node (Source)

"
Updating an index

m Similar to query an index

m When the message arrives at an index
node on the ring, the node updates Iits
Index and forwards the message along the
circle in the clockwise direction

m The message Is dropped when it is
forwarded back to a node that has already

received it

Dealing with clustering failures

Clustering failure area

1
S
by ¥
L (H(K) ..

Enhancements

m Lazy index updating (LIU)
m Lazy index query (LIQ)

Lazy index updating (LIU)

previous storing node

7

index ring

O o O

O
e

Index center O

Y

current storing node

index ring

Index center O

previous storing node

"
PN

current storing node

"
Lazy index query (LIQ)

m An old storing node keeps a pointer to the next storing node for at
least max(3,0) , where ¢ is system parameter, and £ represents
the time period that an old storing node should keep an pointer to
the next storing node

m When a source replies a data message to a sink, it attaches its
location to the message. On receiving the message, the sink caches
the location.

m When a sink wants to query the source of a target, it first checks if it
has cached the location of the source. If the location is cached and
the caching time is less than &, it will send a query directly to the
source. Otherwise, the guery is sent to the index nodes.

Performance Evaluations

TABLE 2

Simulation Parameters
Parameter Value
field size (m?) 850 x 850
number of nodes 2500
communication range (i) 40.0
grid side (m) 17.0
number of target types: Ny 10
data update rate: r; (per target per second) 0.25
number of index centers: N; 4
the migration threshold for a source (m): 34.0
initial radius of an index ring: r (m) 34.0
initial number of index nodes on a ring: m 4
simulation time for each experiment (s) 1000.0
average velocity of a mobile target: v (m/s) 1.0-6.0
size of an update message (byte) 10
size of a query message (byte) 10
size of a data message (byte) 50

" S
Compare the performance of data
dissemination schemes

Overal message complexity (msg/s)

Total traffic (Kbytes/s)

1000

10

Tndex-based (ARI)
LS (source-initiated) —=

5 J—
=
2
S
. -
\--*_-,‘_\: B -
e
- e ——

005 1 1.5 2 25 3 35 4 45
Average query interval (s)

(a)

10 F

0.1

Index-based (ARI) +
LS (source-initiated) =
E§ —

DCS -

0 05 1 15 2 25 3 35 4 45

Average query interval (s)

(c)

LS

ES

DCS
ARI

1 LS

ES
DCS

1 ARI

Haotspot message complexity (msgfs)

The traffic at hots pot (Bytes/s)

10000

1000 |

Index-based (ART)

LS (source-initiated)

DCs —

Average query interval (s)

005 1 15 2 25 3 35 4 45

(b)
100
Index-based (AR ——
LS (source-initiated) —=—
S —_—
0 i =

ry

r i

s
i

Average query interval (s)

(d)

ES
DCS

LS
ARI

ES
DCS

LS
ARI

0 05 1 15 2 25 3 35 4 45

The Index updating

complexity

Fi

(@]

(a)

% 40 noLIU —

E 35 L] ——

g 30t

8

=9 L

E 25

b 20

-

@ 15t

=

o 10 [

=

= 5F 0 rtrceee

2 1

D 0 i i 1 i 1
6 8 10 12 14

Query interval (s)

16

Updating message complexity (msg/s)

message

35+

ll'lG LI'L.J *
LIU ——e—

30 t
25 t
20 t
15
10 1

6 g8 10 12 14 16
Query interval (s)

(b)

. 13. The index updating message complexity with/without LIU (r = 34m % 2, m = 8). (a) v = 3.0 m/s. (b) v = 6.0 m/s.

The guery message complexity

Query message complexity (msg/s)

No LIU :
LIU :
— current_source.
II'ID LiU —
100 :_ \ LIU "
F o\
\
e N

0 2 4 6 &8 10 12 14 16
Query interval (s)

(a)

Query message complexity (msg/s)

sink — index_node — current_source

sink — index_node — old_source; —

- old_source,,

ﬁn LTLII '
LIU "

4

6 8 10 12 14 16
Query interval (s)
(b)

Fig. 14. The query message complexity with/without LIU (r = 34m 2, m = 8). (a) v = 3.0 m/s. (b) v = 6.0 m/s.

" J
The average query delay

0.145

" non-LIU — S [non-LIU —+
_ LIU - |] ,
- 0.14 0.14 + LIU 4
F OS5 1 z oa3s 1
3) -
el B Y 1 S ot [‘ —
o 01251 | T 1 & o025}/ .
”E!” o |]) i T 1
§ 012) _ 1§ o2}
Z =
. < i
0.115 | I 0.115 f -
0.1 S 0.11 e
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Query interval (s) Query interval (s)
(a) (b)

Fig. 15. The average query delay with/without LIU (r = 34m +2,m = 8). (a) v = 3.0 m/s. (b) v = 6.0 m/s.

"
The total message complexity
with LIU

50 ¢

B 200 |
E
=y
Z 150 |
B
=
5t
o 100
2
[¥]
E
B
o
S

...........

:IIII
W
2 4 6 8 10 12 14 16
Query interval (s)
(@)

Overall message complexity (msg/s)

200 |}

100 |

50 |

150 |

(b)

LT -~
~—
4 6 8 10 12 14
Query interval (s)

Fig. 16. The total message complexity with/without LIU (r = 34m % 2,m = 8). (a) v= 3.0 m/s. (b) v = 6.0 m/s.

16

The message complexity with LIQ

NoO L|Q . sink — index_node — old_source, - - - — old_source,,
— current_source.

Query message complexity (msg/s)

100 ¢

10 }

LIQ :

sink — old_sourcey - - -

— old_source,, — current_source.

" LIU

LIU+LIQ,p=0.4 ———

LIU+LIQ,p=0.8

..............

"E

2 4 6 8
Query interval (s)

(@)

10 12 14 16

Overall message complexity (msg/s)

100 |

10

i LIU ———
) LIU+LIQ,p=0.4 ——
LIU +LIQ1.P=0-8 _—
.r.ﬁx:\:?ﬁ_‘:.“_q:&_.n?'
0 2 4 6 8 10 12 14 16

Query interval (s)
(b)

Fig. 17. The message complexity with/without LIQ (r = 34m * 2, m = 8,v = 3.0 m/s).

" A
Conclusions

m Simulation results show that the index-based
scheme outperforms the ES scheme, the DCS
scheme, and LS scheme

m Authors also proposed several mechanisms to
optimize the ARI scheme and the proposed
optimization mechanisms can further improve
the system performance

