Grouping and Partner Selection in Cooperative Wireless Networks

IEEE Journal on Selected Areas in Communications, 2007

Presented by L. K. Chien 2007/11/15

Outline

- Introduction
- System model
- Proposed protocol
- Simulation
- Conclusion

Introduction

- In cooperative networks, how to make groups and select partners?
 - Consider non-altruistic cooperation.
 - Each node has data of its own to transmit
 - Allow non-reciprocal cooperation.
 - Node A helps node B, but node B may not help node A.

Introduction

- Distributed scenarios:
 - Each node can help *n* other nodes, but makes decisions individually.
 - Assume each node has receive-side channel state information (CSI), but no transmit-side CSI.
 - No feedback or handshake in PHY.

Introduction

Centralized scenarios:

- Intuitively, a centralized protocol should provide better performance than the distributed protocol.
- Different amount of information that the centralized controller has may affect performance.
- The goal is to consider a centralized protocol that minimizes the outage across the network.

System model

- Each of the users is assigned an orthogonal multiple access channel.
- The signal-to-noise ratio (SNR) of node *i* to node *j*, γ_{i,j}, is related to transmit power, path loss, shadowing, and distance.
- We assume the cooperating nodes use decode-and-forward (DAF).

System model

- This paper evaluates performance based on outage probability, i.e., that probability that the channel capacity cannot support the desired rate.
- The outage probability is related to SNR and transmission rate.

- Suppose S_i means the partner set that assist node *i*, and *n* means maximum partner number.
- When n = 1, to achieve full diversity (no isolated node), it is required that $Pr\{|S_i|=0\} \rightarrow 0$ at high SNR.
 - Random selection
 - Received SNR selection
 - Fixed priority selection

- Random selection
 - Each node randomly selects a node to assist.
- Received SNR selection
 - Each node assists a node with the highest SNR.
- Fixed priority selection
 - Each node maintains a priority vector {i+1,i+2,...,M,1,2,...,i-1}, where *i* is its ID.
 - Node *i* assists first *n* nodes.

Random selection (n=1)

Received SNR selection (n=1)

Fixed priority selection (n=1)

- Consider a centralized controller for assigning cooperation partners.
- The distinction between distributed and centralized algorithm is that the latter would pick the **best** solution.

- Step1: randomly assign partners
- Step2: compute overall outage probability

Step3: find candidate partners, and exchange.
If outage probability is lower, do it.

Step4: repeat step3 for all nodes.

- 1) Randomly assign partners, and ensure that each node has only one partner.
- 2) Compute average outage probability over all nodes based on available channel knowledge.
- If A assists B, find candidate partners of B, ex: C, and C assists D now. Check if exchanging A and C has lower outage probability.
- 4) Repeat step.3 for all M users until no exchange.

Distributed protocol

Fig. 4. Fixed priority protocol under Rayleigh fading without path loss or shadowing. Users make n = 1, 5 decoding attempts.

Distributed protocol

Fig. 5. Distributed protocols for M = 10 users, n = 1 decoding attempts per user, path loss $\beta = 4$, K = -60dB, shadowing $\sigma_S = 8$. For M = 50 users the curves are virtually identical.

Distributed protocol

Fig. 6. $\Pr\{|S_i| < n\}$ vs. average source-destination SNR for M = 10 users, and n = 1, 3, path loss $\beta = 4$, K = -60dB, and shadowing $\sigma_S = 8$.

Centralized protocol

Fig. 9. Showing the effect of various amounts of information available to the centralized controller. Network has M = 10, 50 users, path loss $\beta = 4$, K = -60dB, and shadowing $\sigma_S = 8$.

Centralized protocol

Fig. 10. Comparison of centralized and distributed protocols. Network has M = 10 users, path loss $\beta = 4$, K = -60dB, and shadowing $\sigma_S = 8$. Source-destination SNR is fixed at 20dB to see the effect of varying rate.

Conclusion

Distributed protocol

 Fixed priority selection can achieve full diversity and improve performance.

Centralized protocol

 If centralized controller has enough channel state information (CSI), it will perform better than distributed protocol.