Scheduling for Amplify-and-Forward Cooperative Networks

IEEE Transactions on Vehicular Technology, November 2007

Presented by L. K. Chien 2008/1/10

Outline

- Introduction
- System model
- Features of scheduling algorithm
- One source and select relay
- Three sources and select source
- Simulation
- Conclusion

Introduction

- Consider a scenario of three nodes, each node has data for other two nodes.
- How to schedule the sequence of source, relay, and destination?

System model

System model

$$y_D^{(k)} = f_{i,k} x^{(k)} + n_{i,k}$$
$$y_D^{(j)} = f_{i,j} x^{(j)} + n_{i,j}$$
$$y_R^{(j)} = G f_{k,j} (f_{i,k} x^{(j)} + n_{i,k}) + n_{k,j}$$

i: source j: destination k: relay $y_D^{(k)}$: received signals of $i \rightarrow k$ $y_D^{(j)}$: received signals of $i \rightarrow j$ $y_R^{(j)}$: received signals of $i \rightarrow k \rightarrow j$ n: noise $x^{(k)}$: data for k $f_{i,i}$: channel coefficient

G: amplification factor

Features of scheduling algorithm

• Fairness

- Shared resources.
- Relay node with higher power consumption.
- Channel adaptation
 - Take channel condition into consideration.
- Distributed coordination
 - Complexity.

- Consider that source A is determined, and A has data for B and C.
- Choose B or C as a relay node to amplify and forward?

Source

- Round Robin (RR)
 - B and C are relay nodes by turns.
 - Fair, low complexity and distributed.

- Relay for the worst link
 - Solve the second second
 - For example, if $SNR_{A,B} < SNR_{A,C}$, C is the relay node.

- Relay for the worst link with normalization
 - Similar as "relay for the worst link", but base on normalized SNR.
 - Normalized SNR
 - = instantaneous SNR / average SNR.

- A, B, and C have data to transmit to other two nodes.
- How to schedule that who is the next source?

- Optimal source selection
 - Select source with best two instantaneous direct links, but suffer from fairness problem.
 - If base on normalized SNR, fairness problem is solved.
 - Centralized, and need signal exchange.

- RR source selection
 - Fair, low computational complexity, and distributed.
 - Select relay node according to normalized SNR.

- "Smart" RR source selection
 - The source is the relay in previous slot.
 - Ex. A is source, and B is relay in $slot_i$. Then B is source in $slot_{i+1}$.
 - The choice of relay is still based on normalized SNR.

• "Smart" RR source selection

How about N >>3 ?

- Consider a network with many nodes.
 - If set a centralized controller to choose source and relay
 - N(N-1) parameter signals.
 - Update frequently.
 - If use proposed "smart" RR source selection + relay selection based on normalized SNR.
 - No parameter signals.
 - Solve fairness problem.
 - Distributed and low complexity.

Simulation

- Assume A is source, and B,C are destinations.
- Evaluate different scheduling scheme.

Simulation-relay selection

Fig. 2. BER performance for the node B.

Simulation-relay selection

Fig. 3. BER performance for the node C.

Simulation-source selection

Fig. 5. BER performance for the node A.

Simulation-throughput

Conclusion

- Relay selection
 - Round Robin (fair but lower performance)
 - SNR based (unfair)
 - Normalized SNR based (fair)
- Source selection
 - Normalized SNR based (optimal but centralized)
 - Round Robin
 - "Smart" RR (relative to previous slot)