Toward Broadcast Reliability in Mobile Ad Hoc Networks with Double Coverage

IEEE Transaction on Mobile Computing, February 2007

Presented by Ming-Chieh Li March 1, 2007

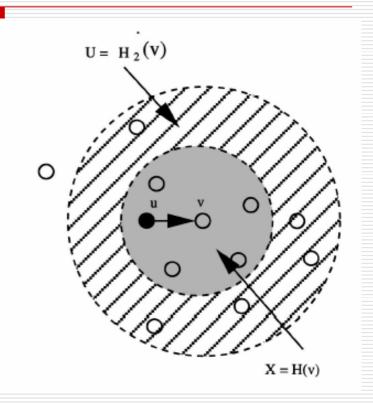
Outline

- Introduction
- □ Related work
- Double-Covered Broadcast (DCB)Algorithm
- Simulation
- Conclusion

Introduction(1/2)

- □ Flooding is one of the most fundamental operations in MANET.
- MANETs suffer from a high transmission error rate because of the high transmission contention and congestion.
- Blind flooding
 - Collision--Broadcast storm problem
 - Consume a lot of energy resource

Introduction(2/2)


- Probability-based broadcast algorithms
 - Only provide probabilistic coverage
- We aim to provide
 - Full coverage in an ideal error-free environment.
 - High delivery ratio in a high transmission error rate environment.

Related work (1/5)

- Neighbor-Designating-Based Broadcasting
 - Probabilistic approaches
 - Broadcast is based on probability p
 - Deterministic approaches
 - □ Select forwarding nodes
 - □ Add these forwarding nodes to the packet
 - Only these forwarding nodes need rebroadcasting

Related work (2/5)

Multipoint relays (MPRs)

- forwarded node
- forwarding node
- o non-forwarding node
- Z U
- ___ X
- covered area

Related work (3/5)

Dominant pruning algorithm (DP)

- forwarded node
- forwarding node
- non-forwarding node
- Zι

Related work (4/5)

- □ Forwarding Node Set Selection Process (FNSSP)
 - 1. Initially, X = H(v), $U = H_2(v)$, and $F = \phi$.
 - 2. Find w (in X) with the maximum effective neighbor degree $deg_e(w) = |N(w) \cap U|$.
 - 3. $F = F \cup \{w\}$, U = U N(w), and $X = X \{w\}$.
 - 4. Repeat steps 2 and 3 until *U* becomes empty.

Related work (5/5)

- □ Reliable Broadcast (RB)
 - Every node receives message will send ACK back to the sender.
 - If the sender does not receive an ACK from any of its neighbors for a predefined period, it resends the message.
 - ACK implosion problem!!

Double-Covered Broadcast Algorithm

- Forwarding nodes satisfy two requirements:
 - They cover all the sender's 2-hop neighbors.
 - The sender's 1-hop neighbors are either forwarding nodes or non-forwarding nodes covered by at least two forwarding nodes.

Fig. 2. Illustrations of the forwarding node set selection process of the DCB algorithm at: (a) a source node and (b) a selected forwarding node.

Double-Covered Broadcast Algorithm

- The sender waits for a predefined duration to overhear the rebroadcast from its forwarding nodes
 - Fail to detect all => resend
 - When the maximum number of retries is reached => stop resending

Advantages of DCB

- Lower message redundancy
 - Avoid broadcast storm problem
 - Avoid ACK implosion problem
 - Packet loss can locally recover
 - Suitable for higher transmission error rate environment

Reliability issues

- Resend
- □ Reselect : Out-of-range movement
- □ Recalculate : by HELLO message

Simulation

- □ Parameters =>
- Movement pattern
 - Random way-point model

Parameter	Value	
Simulator	ns-2 (version 2.26)	
Network Area	$900 \times 900 \ m^2$	
Transmission Range	250 m	
MAC Layer	IEEE 802.11	
Data Packet Size	64 bytes	
Bandwidth	$2\mathrm{M}b/s$	
Simulation Time	100 s	
Number of Trials	10	
Confidence Interval	90%	

☐ Algorithm

Algorithm	Description		
	Transmit	Acknowledge	Retransmit
DCB-SD	forwarding nodes	forwarding nodes	Resend
DCB-ST	forwarding nodes	forwarding nodes	Reselect
DCB-RE	forwarding nodes	forwarding nodes	Recalculate
AHBP-EX	forwarding nodes	none	none
BF	all nodes	none	none
RB	all nodes	all nodes	flooding

- Metrics
 - Broadcast delivery ratio
 - Broadcast forwarding ratio
 - Broadcast overhead
 - Broadcast packet + Control packet
 - Broadcast end-to-end delay

Number of nodes

Delivery ratio VS. Overhead

Transmission Error Rate

Delivery ratio VS. End-to-end delay

Number of retries

Delivery ratio VS. Overhead

Conclusion

- Simulation result of DCB
 - High delivery ratio
 - Low forwarding ratio
 - Low overhead
 - Low end-to-end delay
 - Suitable for high transmission error ratio environment
- Full reliability for all forwarding nodes but not for non-forwarding nodes.