On Broadcasting with Cooperative Diversity in Multi-Hop Wireless Networks

IEEE Journal on selected areas in communications, February 2007

Presented by Ming-Chieh Li May 31, 2007

Outline

- Introduction
- □ Related work
- Optimal cooperative broadcasting
- Distributed approach : Coop-cast
- Simulation
- Conclusion

Introduction

- ☐ Cooperative diversity:
 - Nodes that are in the close proximity of one another transmit the same packet at the same time to emulate an antenna array.
- Cooperative diversity can increase
 - The achieved transmission range
 - The achievable data rate
 - Reliability

Related work

- By using space time codes (ex. orthogonal code), nodes can transmit at the same time.
- With diversity gain, the signal can be recovered at a distance farther than, when there is no diversity.

Optimal cooperative broadcasting

- Coop-cast tree with minimum cost can be reduced to a Steiner tree problem. => NP-Complete!!
 - One to one mapping
 - Appendix.

Coop-cast tree

Distributed approach: Coop-cast

- Counter-based approach
 - After receiving a given broadcast packet, a node sets a timer and counts the number of times it hears the same packet.
- Cooperative broadcast : multiple nodes broadcast
- ☐ SISO broadcast : single node broadcast

Algorithm(1/5)

- Source randomly selects some neighbors to coop-cast
 - Add the list to the packet
 - With k neighbors
 - If the node has other information (ex. GPS), it could choose better neighbors
- Source broadcasts the packet

Algorithm(2/5)

- When the chosen neighbors receive the packet
 - Send pilot tones orderly (ex. minimum ID first)
 - When receiving all pilot tones => broadcasting at the same time!!

Algorithm(3/5)

- When nodes receive this message
 - If neighbors > k , then do cooperative broadcast
 - Else ,
 do SISO broadcast

Algorithm (4/5)

Algorithm(5/5)

- For reducing the message overhead, nodes set a timer and count the messages.
 - If the number of messages exceed a threshold => Stopping broadcast!
 - For cooperative : only count the cooperative broadcast messages
 - For SISO : count all broadcast messages

Simulation

- Metrics
 - Coverage
 - Average end-to-end latency
 - Cost
- \square Set the count threshold $\theta = 3$
- \square Timer=c* θ *Tp

Coverage vs. Number of Nodes

Average End-to-End Latency vs. Number of Nodes

Cost vs. Number of Nodes

Conclusion

- Cooperation can yield an extension in the transmission range, due to the diversity gain achieved in fading environment.
 - Increasing the broadcast coverage
 - Reducing the latency up to 50%
- Studying the optimal network-wide cooperative problem

Discussion(1/2)

- □ Since the cooperating transmitters are not co-located, the signals they transmit could be received at the destination with different delays and average received powers.
- Cooperative or Interference?!

Discussion(2/2)

