Tree-Based Data Broadcast in IEEE 802.15.4 and ZigBee Networks

IEEE Transactions on Mobile Computing, November 2006

Presented by Ming-Chieh Li July 18, 2007

Outline

- Introduction
- Related work
- ZigBee On-Tree Self-Pruning Algorithm
- ZigBee On-Tree Selection Algorithm
- Performance evaluation
- Conclusion

Introduction(1/2)

 Flooding is one of the most fundamental operations in MANET.

- Blind flooding
 - Collision--Broadcast storm problem
 - Consume a lot of energy resource

Introduction(2/2)

- ZigBee device
 - Limited computation and storage capacity
 - Small size and low cost
 - Low data rate and low power applications

In a typical ZigBee network, the network addresses are organized in a hierarchical manner so that one node can easily identify addresses of its tree neighbors

Related work(1/2)

- The problem of selecting the minimum number of forward nodes is essentially the well-studied set cover problem
 - NP-hard problem!!

The solution can be approximation by greedy algorithms

Related work(2/2)

- Scalable Broadcast Algorithm (SBA)
 - Self-pruning
 - If the node's 1-hop neighbors were covered, it will stop rebroadcasting

- Ad Hoc Broadcast Protocol (AHBP)
 - Forward nodes selection
 - The node selects its 1-hop neighbors to cover all its 2-hop neighbors greedily

ZigBee On-Tree Self-Pruning Algorithm

- Self-pruning needs 2-hop neighbor information
 - ZigBee network is not available

 By exploiting the tree structure of ZigBee address space, a node can find addresses of a partial list of 2-hop neighbors

Example of ZigBee address space

If #1, #6, and #7 are #2's neighbors, they will be pruned.

Example of OSR

v only needs to check v1~v4

Fig. 2. A ZigBee network topology. (a) Physical topology. (b) Logical ZigBee tree topology.

ZigBee On-Tree Selection Algorithm

To find the smallest forward node set to cover the tree node's 2-hop neighbors.

- Since a large part of the memory has already been used by the routing table and neighbor table
 - May not have enough space to store the whole forest
 - By ZOS can resolve it!!

- For Optimal On-tree Selection (OOS)
 - Needs to store S(v) and C(v)
- For ZigBee On-Tree Selection Algorithm (ZOS)
 - Only needs to store S(v)
 - C(v) can be calculated by ZigBee address space

Example of ZOS

$$F(v) = \{v_1, v_4, u_1, u_4, u_5, u_6, \text{ and } u_7\}$$

Fig. 5. An example of using the OOS algorithm. (a) The local ZigBee tree topology known by node v. (b) Step 2 in the OOS algorithm.

Performance evaluation

- Simulated algorithms
 - Self-pruning:
 - SBA
 - OSR
 - Forward nodes selection :
 - AHBP
 - ZOS
 - ZigBee broadcast with tree neighbors
 - Global algorithm with greedy method

The number of rebroadcast nodes

Global < ZOS < AHBP < OSR < SBA < ZigBee

Average duplicated packets

Coverage time

Transmission range(10m v.s 55m)

When transmission range increases,

the performance of the **ZOS** is significant increased.

The communication overhead of the ZOS algorithm

Conclusion

 Only physical 1-hop neighbors and logical tree neighbors are known in ZigBee networks.

- This paper has proposed two broadcast algorithms for IEEE 802.15.4 and ZigBee networks.
 - □ For self-pruning : OSR > SBA
 - For forward nodes selection: ZOS > AHBP

Thank You!!