Improving Broadcasting Performance by Clustering with Stability for Inter-Vehicle Communication

> VTC 2007 Presented by Ming-Chieh Li January 10, 2008

Outline

- Introduction
- Related works
- The Clustering Algorithm
- The Broadcasting Algorithm
- Simulation results
- Conclusions

Introduction(1/2)

- Vehicular Ad Hoc Networks (VANETs), an outgrowth of traditional Mobile Ad Hoc Networks (MANETs), provide one of the basic network communication frameworks.
 - Vehicles provide a robust infrastructure for the creation of highly mobile networks.
 - Vehicles can easily be equipped with the storage, processing, and sensing devices.

Introduction(2/2)

- In both MANETs and VANETs applications, broadcasting is the fundamental process in which essentially a mobile node sends a packet to all the nodes in the network.
 - Flooding is the simplest one, but it could cause the network collisions and contentions.
 - Broadcast storm problem!!
- Many researches have been done to design efficient schemes in MANETs, but none of them is specially designed based upon the unique features of vehicle networks.

Related work(1/2)

Probability-based

- □ The node rebroadcast with a predefined probability.
- The probability can be adjusted according to the network environment.

Counter-based

- On reception of an unseen packet, the node initiates a counter with value of one and sets a timer.
- The node rebroadcast if the counter is below the predefined threshold.

Related work(2/2)

Location-based

 Each node uses a more accurate method to determine its location such as a Global Positioning System (GPS).

Cluster-based

- Only cluster heads (CHs) and gateways rebroadcast the packets.
- Cluster's maintenance must be effective.

The Cluster Formation

The Clustering Algorithm

Each node has an ID initially.

- Each node broadcasts Hello message with its ID to its neighbors periodically.
- CH is determined by three major factors
 ID, current direction, and leadership duration.

An example of Lower-ID Clustering

The Clustering Election Procedure

Recovery Mechanism

- If the node has not yet received that beacon within the expiration period, it would indicate the CH has detached from it.
 - Looking for other CHs actively
 - If someone satisfies these three conditions as mentioned above, it becomes the new CH.
 - Otherwise, the node becomes a CH immediately.

The Broadcasting Algorithm

- At first, the source broadcasts the packet.
- Other nodes receive the packet
 - □ If the node is CH
 - Rebroadcast the packet immediately
 - If the node is gateway
 - If the packet is from "outside"
 - Rebroadcasts the packet immediately
 - Else, initializes a counter to count redundant packets
 - □ If the counter is less than threshold, rebroadcasts the packet

Simulation results

- JIST/SWANS simulator
- Number of nodes = 50~250
- Transmission range = 150m
- Packet size = 64 bytes
- Data rate = 20 packets/sec

Simulation results

Four schemes to compare

- Proposed Cluster-based algorithm
- Flooding
- Probability-based with 0.3
- Counter-based with 4

Reachability

Number of Rebroadcasting

End-to-End Delay

Reachability vs. Speed Limit

Conclusions

- The directional data and leader duration help improve the stability of clustering scheme under VANET environments.
 - Decreases the overhead required to maintain network topology due to high mobility.
- The broadcasting scheme selects subset of gateways to rebroadcast a package.
 - Significantly improves broadcast reachability with a very low number of rebroadcasts.