Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

INFOCOM 2008
Presented by Ming-Chieh Li
May 22, 2008

Outline

- Introduction
- Related works
- Efficient Broadcasting using Network Coding and Directional Antennas (EBCD)
- Extensions of EBCD
- Simulation
- Conclusions

Introduction(1/2)

 Broadcasting is the most frequently used operation in mobile ad hoc networks (MANETs)

 Many researches have been proposed to avoid the broadcast storm problem caused by simple blind flooding

Introduction(2/2)

- Network coding combines many forward messages to fewer coded messages
 - Timing problem
 - Multiple sources with multiple messages
- Directional antennas divide the omnidirectional transmission range into several sectors
 - Transmission can be performed only in selected sectors

Related work(1/2)

- Probabilistic broadcast
 - Require relatively high broadcast redundancy to maintain an acceptable delivery ratio
- Deterministic broadcast
 - Nodes select a few forwarding nodes to achieve full delivery
 - Need h-hop neighbor information

Related work(2/2)

- Connected dominating set (CDS)
 - Only CDS nodes rebroadcast
 - Finding minimum CDS is NP-Complete

System assumptions

- Each node knows its 2-hop neighbor information by exchanging HELLO messages
- The reception mode of all nodes is omnidirectional
- The consumption of the transmission of one message in one sector is the unit energy consumption

Efficient Broadcasting using Network Coding and Directional Antennas (EBCD)

Traditional broadcasting = 4x4 = 16

Broadcasting with network coding = 4x2=8

 Π

Ш

b

	A	В	С	D
a	1	1	0	0
b	1	1	1	0
c	0	1	1	1
d	0	0	1	1
e	1	1	1	1

 I
 P1
 P2

 I
 1
 1

 II
 1
 1

 III
 0
 1

 IV
 1
 0

(b)

(c)

Efficient Broadcasting using Network Coding and Directional Antennas (EBCD)

- Using a greedy approach for network coding
 - Ex. Messages arrive in the order of A,C,B,D
 - □ At first, $P_1 = A$
 - □ e tries to make $P_1=A \oplus C \rightarrow ok!!$
 - □ e tries to make P₁=A⊕C⊕B → incorrect!!
 - □ Then $P_1 = A \oplus C$
 - □ The same as $P_2 = B \oplus D$

	Α	В	C	D
a	1	1	0	0
b	1	1	1	0
c	0	1	1	1
d	0	0	1	1
e	1	1	1	1

Execution of dynamic and static EBCD

Extensions of EBCD

Single source and single message broadcast

(a) Pipeline-based approach

(b) Spread-out approach

Simulation results

- Network area = 100x100m²
- Number of nodes = 20~100 nodes
- Broadcast sessions = 20
- Node degrees = 6 for sparse network and
 18 for dense network
- Number of sectors = 4 and 6

Simulation results

- Three schemes to compare
 - EBCD (Coding + Directional antennas)
 - Coding
 - CDS

Number of transmissions

The reduction rate is higher in dense network!!

(a) Dense network (d = 18)

(b) Sparse network (d = 6)

Number of sectors

When K is larger, the reduction rate of EBCD is more significant!!

(a) Dense network (K = 4)

(b) Dense network (K = 6)

Comparison of PB and SO in number of

transmissions

PB: Pipeline-based approach

SO: Spread-out approach

k : segment numbers

(a) Dense network (d = 18)

(b) Sparse network (d = 6)

Conclusions

- We combine the network coding-based broadcast approach with broadcasting using directional antennas for a more efficient broadcast strategy, developing efficient broadcasting using network coding and directional antenna algorithm (EBCD).
- The proposed EBCD approach has better performance than traditional CDS-based broadcast and the existing network codingbased broadcast in terms of energy consumption and transmission redundancy.

Discussions

 2-hop (or more) neighbor information is inaccurate in mobile environment

- Timing issues
 - □ Timer is larger → delay is larger
 - □ Timer is smaller → coding is inefficient