Performance Analysis of Handoff Techniques Based on Mobile IP,TCP-Migrate, and SIP

IEEE TRANSACTIONS ON MOBILE COMPUTING, July 2007
Presented by Chun-Hung Liao 2007/6/7

т.

Outline

- Introduction
- Mobility management
- Classification of applications
- Qualitative handoff performance analysis of existing mobility management protocols
- Analytical modeling
- Handoff performance comparison
- Summary and conclusion

Introduction

- Next-generation wireless systems(NGWS) integrate different wireless networks to provide ubiquitous "always best connection" to mobile users.
- In NGWN, mobile users are connected to the best available networks that suit their service requirements and switch between different networks based on their service needs.

Introduction

- Efficient mobility management protocols are required to support mobility across heterogeneous access networks.
- To answer the question "What is the suitable mobility management protocol for a particular application class?"

Mobility management

- Location management
 - Enabling the system to track the locations of mobile users between consecutive communications.
- Handoff management
 - □ The process by which users keep their connections active when they move from one base station (BS) to another.

Classification of applications

Class A Applications:

- □ TCP or UDP applications that are short lived and originated by a mobile node (MN).
- Therefore, these applications do not require location or handoff support.

Class B Applications:

- TCP applications that are long lived and originated by an MN such as Web browsing and telnet sessions.
- These applications do not require location support but require handoff support.

Class C Applications:

- □ TCP applications that are long lived and terminated at an MN such as telnet sessions.
- Location and handoff support are required.

.

Classification of applications

Class D Applications:

- UDP applications that are long lived and originated by an MN such as mobile telephony where MN is the calling party.
- □ These applications require only handoff support.

Class E Applications:

- □ UDP applications that are long lived and terminated at an MN such as mobile telephony where MN is the called party.
- these applications require both location and handoff support.

Classification of applications

- The results of our analysis advocate :
 - □ The use of transport layer mobility management for Class B and Class C applications.
 - Mobile IP for non-real-time Class D and Class E applications.
 - Session Initiation Protocol-based mobility management for real-time Class D and Class E applications.

Qualitative handoff performance analysis of existing mobility management protocols

- Parameters:
 - ☐ Handoff latency
 - □ Packet loss during handoff
 - □ Throughput degradation time
 - □ End-to-end delay
 - □ Transport-layer transparency

Network Layer (Layer 3) Mobility Management Protocols

- Mobile IP registration introduces a significant amount of latency during handoff.
- Mobile IP triangular routing increases the endto-end delay.
- Mobile IP handoff is transparent to the applications and the transport layer connections are kept intact during a handoff.

M

Transport Layer (Layer 4) Mobility Management Protocols

- The communicating end points are involved in the handoff process, the latency is often lower than that of Mobile IP.
- The packets that are lost during the handoff can be recovered because of TCP retransmission.
- As a transport layer connection is reactivated upon handoff, the applications remain transparent to mobility.

M

Application Layer (Layer 5) Mobility Management Protocols

- Because redirecting agents are used during handoff, the handoff latency of SIP is comparable to that of Mobile IP but is higher than the transport layer mobility protocols.
- The packets during the handoff signaling procedures are lost, making handoff packet loss comparable to that of Mobile IP handoff.
- SIP mobility is not transparent to TCP protocol.

TABLE 1
Qualitative Performance of Mobility Management Protocols

Performance parameter	Layer 2	Layer 3	Layer 4	Layer 5
Handoff latency	Worst	Worse	Weak	Worse
Handoff packet loss	Worst	Worse	Weak	Worse
End-to-end delay	Good	Weak	Good	Good
Transport-layer transparency	Weak	Good	Good	Weak
Security	Good	Good	Good	Good

×

Analytical modeling

- End-to-End Packet Loss Probability
 - with Radio Link Protocol(RLP) and without RLP
- End-to-End Packet Transportation Delay
- Average Signaling Packet Transportation
 Delay Using UDP
- TCP Retransmission Timeout Duration
- Time for TCP Slow Start

Handoff Performance Comparison of Mobile IP and TCP-Migrate for a TCP Connection

 $\mathbf{t}_{ ext{whn}}$: delay between the home agent and new base station

Handoff Performance Comparison of Mobile IP and TCP-Migrate for a TCP Connection

Handoff Performance Comparison of Mobile IP and SIP for a UDP Connection

Summary and conclusion

- our analysis shows that the handoff performance of a mobility management protocol depends on the following factors:
 - □ Type of application
 - □ Link layer frame error probability
 - □ Signaling delay
 - ☐ Link layer access technologies
- The use of application-adaptive mobility itself is not enough to support seamless mobility management.
- Information sharing between different layers to enhance the performance of mobility management.