Service Charge and Energy-Aware Vertical Handoff in Integrated IEEE 802.16e/802.11 Networks

IEEE INFOCOM 2007 Presented by Chun-Hung Liao 2007/8/30

Outline

- Introduction
- System Model
- Scanning Rule for WLANS
- VHO Decision Framework

Conclusion

Introduction

- Vertical handoff (VHO), i.e., handoff across heterogeneous access networks, is considered a key feature to bring the next generation wireless communication era.
- Three generalized steps of handoff :
 - □ Finding candidate networks
 - □ Deciding a handoff3
 - Executing a handoff

Introduction

- Comparison of VHO between WLAN and 3G system and VHO between WLAN and 802.16e.
- Two issues considered in this paper :
 Finding a possible network
 - □ Making a decision

System Model

Two assumptions :

The 802.16e network is assumed to be always reachable by MSTAs.

The 802.16e network can assist MSTAs to search available 802.11 networks.

Handling MSTA's Mobility-Related Issues

- The velocity of an MSTA is one of the important factors in VHO.
- The ping-pong effect.
- MSTA does not consider a VHO into WLANs when its speed exceeds a certain threshold V_{max}.

Handling MSTA's Mobility-Related Issues

Proposition 1:

V_{max} should satisfy the condition :

 $\mathsf{Prob}(\mathsf{s} > \mathsf{k}\,\xi\,) > \,\phi$

$$v_{\rm max} = \frac{2r}{\kappa\zeta}\sqrt{1-\phi^2}$$

IEEE 802.16e-Assisted 802.11 Scanning

- How do MSTAs find 802.11 APs ?
- A simple method is that MSTAs should keep its WLAN interface turned on or switch it on periodically at a pre-determined time interval to detect a WLAN signal.
- Energy-efficient ?

IEEE 802.16e-Assisted 802.11 Scanning

- Which information will the 802.16e network provide to aid MSTAs to discovery available 802.11 APs ?
- The more detailed the information is, the more efficient scheme can be devised.
- Precious bandwidth resources.

IEEE 802.16e-Assisted 802.11 Scanning

- I-octet overhead indicating the 802.11 AP density.
- Modify a MAC management message, called MOB_NBR-ADV.

TABLE I

MODIFIED MOB_NBR-ADV MESSAGE FORMAT.

Syntax	Size	Notes
Mgmt Message Type = 53	8 bits	
Optional fields bitmap	8 bits	Bit[0]= 1, omit Operator ID field Bit[4]= 1, omit VHO fields Bit[5]-Bit[7]: reserved
if(Bit[4]=0){		
VHO info	8 bits	The 802.11 AP density in the 802.16e cell coverage
}		
N_NEIGHBORS	8 bits	
	•••	

Scanning Rule for WLANS

Proposition 2:

If $\rho > \rho_{min}$, an MSTA attempts to scan WLANs. Otherwise, turn off the WLAN interface until ρ is newly given by another 802.16e BS.

■ 802.11 active scan & passive scan.

- An active scan trial operates as follows:
 - After broadcasting a Probe Request frame at a specific frequency channel, if the channel stays idle for *min-ChannelTime*, declare the channel as empty.
 - If the channel becomes busy within in ChannelTime, waits for maxChannelTime in the receiving MAC state,and then handles Probe Response frames received afterwards.
 - Moving to the next channel, repeat the same procedures until there is no frequency channel to scan.

	Frame	Body	L
PLCP Preamble/Header (192us) MAC Header (24 octets)	SSID	Supported Rates	FCS
	(Element ID(1)+LENGTH(1)+SSID(0~32))	(Element ID(1)+LENGTH(1)+rates(1~8))	(4 octets)

Fig. 1. Probe Request frame.

(b) The scan trial is successful.

Fig. 2. Transmissions of Probe Request frames during a scan trial.

- If a nonempty channel is examined, the scan time *Tu* is
 - $T_u = T_{p_req} + \max$ ChannelTime
- if an empty channel is examined, the scan time *Te* is

 $T_e = T_{p_req} + \min$ ChannelTime

- For total *n* frequency channels, each channel is sequentially examined by transmitting a Probe Request frame.
- A scan trial is completed if n sequential scans are completed.
- A scan trial is successful or failed.
- A scan interval $\tau_s >> nTe \simeq 23 ms$ for n = 11since $Te \simeq 2.12 ms$

 \mathcal{T} s is lower-bounded by

$$\tau_s \ge \tau_s^{\min} = 0.23 \ sec$$

For *C* s, the energy consumption is minimized by changing MSTA's MAC state to sleep or off state.

A scan trial failed, the energy consumption is

 $\delta_{fail} = (DIFS + \frac{aCWmin}{2} + \text{minChannelTime})P_l + (T_{p_req} - DIFS - \frac{aCWmin}{2})P_t.$

Obviously,

$$\delta_{success} > \delta_{fail}$$

TABLE II

POWER CONSUMPTION DEPENDING ON THE MAC STATES OF WLAN [18].

MAC States	Power Consumption	Description
Off	0 mW	Turns off the WLAN interface completely
Sleep	$P_s = 40 \ mW$	Turns off most parts of circuit except for critical circuit
Listen	$P_l = 800 \ mW$	Keeps sensing the carrier
Receive	$P_r = 900 \ mW$	Performs the receive operations such as demodulation
Transmit	$P_t = 2,000 \ mW$	Transmits the frame to the air

- *E*(*k*) : the energy consumption after k scan trials.
- $\mathcal{E}_{fail}(k)$ is the lower bound of $\mathcal{E}(k)$, i.e. the energy consumption when all k trials failed.

$$\mathcal{E}_{fail}(k) = (n\delta_{fail} + \tau_s P_s) k$$

When scanning is done during time t,

$$k = \left[\frac{t}{nT_e + \tau_s}\right]$$

Proposition 3: At a given time t, & fail(k) is a decreasing function of T s.

$$\frac{d\mathcal{E}_{fail}}{d\tau_s} = -\frac{nt}{(nT_e + \tau_s)^2} \left(\delta_{fail} - P_s T_e\right)$$

Analytical Model for Scanning in Mobile Environment

- $\triangle C(k)$ the additional area examined at the *k*-th scan trial.
- Letting $S(k) = \sum_{i=1}^{k} \Delta C(i)$
- the cumulative probability Ps(k) of a successful scan after k trials can be represented

$$P_s(k) = 1 - P(0) = 1 - e^{-\rho S(k)}$$

Ps(k) is proportional to k.

Analytical Model for Scanning in Mobile Environment

The profiles of the simulation :

□ The side of the square that is assumed to be the coverage of the 802.16e single-cell is

$$10^3\sqrt{\pi}$$
 m.

- At time t = 0, and an MSTA are placed randomly in the square.
- The MSTA starts to move according to the random waypoint model[19], and moves linearly with the constant speed.
- □ A run of simulation is finished if the scan trial is successful or the simulation time reaches t_{max} .

Optimal Scanning Rule

Problem 1: Scanning Problem in WLAN

$$\min \mathcal{E}_{fail}$$
s.t.
$$P_s \ge P_{target}$$

where the constraint is interpreted that the scan should succeed with a probability larger than Ptarget.

Optimal Scanning Rule

Proposition 4: pmin is the minimum p, which satisfies Ps ≥ Ptarget using T_s = T_s^{min}
 For a given p > pmn, we solve Problem 1 using the energy efficient scan policy (ESP) algorithm:

Energy-efficient Scan Policy (ESP)

- a small τ s is preferred for a given k to minimize ε , from $k = \left[\frac{t_{\max}}{nT_e + \tau_s}\right]$ $\tau_s = \max\left\{\frac{t_{\max}}{k} - nT_e, \tau_s^{\min}\right\}$
 - According to Proposition 3, k should be minimized to maximize τ s.

$$k_{\min} = \min\left\{k|S(k) \ge -\frac{\ln\left(1 - P_{target}\right)}{\rho}\right\}$$

Energy-efficient Scan Policy (ESP)

$$\tau_s^* = \max\left\{\frac{t_{\max}}{k_{\min}} - nT_e, \tau_s^{\min}\right\}$$

VHO Decision Framework

- Delayed Traffic Delivery (DTD)+ESP Algorithm
- Periodic Scan (PS)DTD+PS

Conclusion

- 802.11 active scan, we develop a mathematical model, which shows the successful scan probability in terms of the AP density and the scan interval.
- Energy-efficient scan Policy (ESP) algorithm
- Under a practical service charge plan, it is beneficial for user to control the usage of the 802.16e network.