Scalable and Reliable Sensor Network Routing: Performance Study from Field Deployment

> INFOCOM 2007 Presented by Chi-Han Lin in 10/4

Outline

- Introduction
- Directed Transmission Routing Protocol(DTRP)
- Implementation
- Performance Evaluation
- Conclusion
- Discussion

Introduction

- There are two requirements in a sensor network.
 - Scalability
 - Reliability
- But there is an important trade-off between reliability and scalability in sensor network routing.
- A working solution should not compromise one goal for the other.

Introduction

- A number of routing protocol in ad hoc network(i.e., table-driven and on-demand) can't satisfy the requirements.
- To achieve the two goals, various sensor network routing scheme have been proposed.
 - Gossiping(an efficient way of broadcasting, probabilistic transmission).
 - MINTRoute(the standard routing protocol software for TinyOS).

Introduction

- In this paper, the main routing protocol is a real world implementation of the parametric and probabilistic approaches.
- Here, reliability defines as resiliency against changes in network status due to various factors including but not limited to
 - Node failures
 - Mobility
 - Volatile wireless links
 - Harsh environments
 - Malicious nodes

- DTRP is a multipath proactive routing protocol specially designed for WSN to provide improved scalability and reliability.
- DTRP does not use the beacon packet to resolve the next hop node for the destination (i.e., the sink).
- The beacon provides only the hop-count distance value between the sink and other sensor nodes.

• Define three values d_1 , d_2 , d_3 .

• Transmission probability *p*^{tx} defined as follows:

$$p^{tx} = e^{k \, \mathcal{A}} \tag{1}$$

• Where $\alpha = d_1 - (d_2 + d_3)$ and k is the tunable parameter that determines the reliability and the scalability of the packet.

• The propagation model

• The reception probability p^{rx} has a recursive definition.

$$p_{(i+1,j)}^{rx} = \min(\sum_{\forall j: j \leftrightarrow k} p_{(i,k)}^{rx} \cdot p_{(i,k)}^{tx}, \quad 1), \quad p_{(0,k)}^{rx} = 1$$
(2)

(c) The real packet transmission probability(q^{tx})

$$q^{tx} = p^{rx} \cdot p^{tx}$$

Implementation

- Hardware: Mica2 motes +Stargates(monitoring system)
- Software: TinyOS 1.1.15
- Environment:
 - Small network scenario(3x5 nodes)
 - Large network scenario(3×10 nodes)
- Protocols:
 - DTRP
 - MINTRoute
 - Gossiping(probability is set to 0.7)

Implementation

- Two topologies:
 - Grid topology

• Random topology

Implementation

- The number of sources: 1, 3, 5, 7, 9
- Every experiment time : 10 minutes
- Two specific network measure:
 - Packets delivery ratio(PDR)
 - Total network load

Small networks-PDR

Small networks-Total network load

Large networks-PDR

Large networks-Total network load

• PDR vs. Load for Grid Topology

Conclusion

- In this paper, DTRP is a simple but powerful sensor network routing and implemented in real world.
- DTRP satisfies reliability and scalability and provides greater performance than Gossiping.
- DTRP deliver markedly greater percentage of packets than MINTRoute and Gossiping at the same load.

Discussion

- Expected value vs. probability.
- DTRP is difficult to adapt to no sink networks(i.e., ad hoc network).