Rateless Deluge: Over-the-Air Programming of Wireless Sensor Networks using Random Linear Codes

IPSN 2008

Presented by L. C. Yang 2008/5/29

Outline

- Introduction
- Related Work
- Proposed approach
 - -Rateless Deluge
 - -ACKless Deluge
- Experiment and Simulation
- Conclusion

Introduction

 Sensor networks' software often needs to be updated after deployment.

 Over-the-air programming (OAP) protocols play a key role as an enabling technology to numerous sensor network applications.

Introduction

- Performance degrades when the network size and density get large, and when packet loss is high.
- This lack scalability can largely be attributed to the high control overhead, most specifically with (NACK) mechanisms.
 - -NACK implosion problem.

Introduction

This paper use rateless coding to eliminate the need to convey control information about which packets require retransmission.

Deluge

 Divides data image into pages, each page consisting of fix number of packets.

Piplining.

NACK-based protocol.

Deluge

Pipelining

Rateless and Random Linear Codes

Do not need to indicate which packets require retransmission; just have to receive a sufficient number of packets can be used to decode.

- Communication and energy savings.
- Lower control overhead.

Rateless and Random Linear Codes

Rateless and Random Linear Codes

Traditional:

Request Lost Packets:

Transmit Lost Data:

Rateless Codes:

Request Lost Packets:

Transmit Lost Data:

Rateless Deluge

 Modify the original Deluge protocol in that it uses rateless codes to transmit data.

 This change causes the communication in the control and data planes are reduced.

Rateless Deluge

- Change for request mechanism:
 - -Only need the number of missing packet instead of bit vector.
- Change for sender:
 - -Encoding before send (cost time).
 - ->Precoding.
- Change for receiver:
 - -Decoding after receive.

State diagram for sender

State diagram for receiver

ACKless Deluge

- Attempts to completely eliminate the need for NACKs.
 - ->no waiting time for precoding
- Employs a FEC mechanism at the packet level which sends extra encoded packets in addition to the requested number of packets.
- FEC is dependent on number of neighbor and probablity of loss.

Experiment

- 1-Hop
- 9-pages image

16 motes

20-packets per page

Experiment

N/2 1-Hop

N/2 2-Hop

9-pages image

Simulation

9-pages image

7%Packet loss rate

Conclusion

This paper shows the benefits of using random linear codes for over-the-air programming of sensor networks.

 We expect that rateless code transfer mechanisms are practical and useful for any communication protocol in wireless sensor networks.