STDCS: A Spatio-Temporal Data-Centric Storage Scheme For Real-Time Sensornet Applications SECON 2008

Mohamed Aly
Anandha Gopalan
Jerry Zhao
Adel M. Youssef

Outline

- Introduction
- Related Work
- Spatio-Temporal Data-Centric Storage Scheme (STDCS)
- Experimental Evaluation
- Conclusion

Introduction

• Sensor networks in the future will consist of globally deployed sensors providing real-time geo-centric information to users.

 Users issue ad-hoc queries asking for real-time data generated by sensors falling in a particular area.

Introduction

- There may exist some hotspots, where most of the mobile users issue queries to a small number of sensors.
- Traffic skewness and hotspots can result in the early death of battery-operated sensors.
- The major design goal for STDCS is load-balancing.

Related Work

- Date storage:
 - Use a base station to store all the data.
 - Local storage.
 - In-network Date-Centric Storage.
 - Hash table
 - K-d tree
- Load balancing:
 - Decomposing storage hotspot.
 - Avoiding hotspot.

Spatio-Temporal Data-Centric Storage Scheme (STDCS)

- Local Virtual Address Assignment.
- The spatio-temporal data indexing.
- The point-to-point Delivery of Readings.
- Query Processing.
- Adaptive Hotspot Decomposition.

Local Virtual Address Assignment

2-D Tree

Spatio-Temporal Data Indexing

- Determines the storage-sensor of every sensor in the cluster using the virtual address .
- Two main parameters :
 - prefix : determine the size of subcluster
 - offset : used for change mapping function value : o~2^perfix

Spatial Data Indexing-Subcluster Mapping

Spatial Data Indexing-Sensor Mapping

- Case 1 : bit-length of original sensor = storage sensor
 - ex : 10 -> 01
 - 1010 -> 0110
- Case 2 : bit-length of original sensor > storage sensor
 - ex:10 -> 01
 - 1000 -> 010 , 1001 -> 010
- Case 3: bit-length of original sensor < storage sensor
 - ex:10 -> 00
 - 1001 -> 00010 Or 00011

Temporal Data Indexing

- Switching-time: Determine the duration of the mapping function.
- Partition time into slots, length of slot is equal to switching-time.
- At the start of each slot, all sensors change the mapping function by increment the value of offset.

Point-to-Point Delivery of Readings

- Each intermediate node computes the Least Common Ancestor(LCA) in the 2-d tree between itself and this destination.
- LCA is defined as the most-significant non-matching bit between their bit-codes.
- Determines the sending direction based on the value of the bit.

Point-to-Point Delivery of Readings

Query Processing

00 -> 01

O1 -> 10

Adaptive Hotspot Decomposition

- Keeping track of the hotspot distribution in the cluster and dynamically changing the value of switching_time.
- Collecting feedback about query load encountered by all sensors.

Adaptive Hotspot Decomposition

- Each senor keep tracking of its Average Querying Frequency(AQF).
- One sensor acts like a central authority initiates a BFS query collecting the AQFs of all sensors.
- Based on this distribution, it determines whether a hotspot exists or no, as well as how severe is the hotspot.

Adaptive Hotspot Decomposition

- Case 1 : A hotsopt takes place in a small area.
 - Decrease the value of the switch_time.
- Case 2 : A hotspot may be spanning more than one subcluster.
 - Increase the value of prefix.

Experimental Evaluation

- Sensors are randomly distributed in 200M x 200M square.
- GPSR as underlying routing protocol.
- Starting energy for every sensor is 30K unit.
- Send and receive cost 1 unit.
- Communication range is 25M.
- 1 query generated every 5 min.
- 10~50 query generated every min for hotspot.

Compare to other scheme

Node deaths vs hotspot levels

Adaptive STDCS performance

Conclusion

- This paper introduces the novel idea of using both the generation time and the sensor location of the sensor readings to achieve load-balancing.
- Through simulation, we showed our scheme's ability to excel versus query hotspots of different sizes when compared to local storage and plain unbalanced spatial indexing.