A Distributed Policy Scheduling for Wireless Sensor Networks

Infocom 2007 Yu Chen, Eric Fleury 2008/02/21

Outline

- Introduction
- Coloring
- Color scheduling scheme
- Simulation
- Conclusion

Introduction

- Save energy by collision avoidance + duty cycling
- Although duty cycling can save power, it also disrupts network performance

Link disconnections

 Duty cycling needs synchronization to solve the above problems

Introduction(2)

- Save energy by integrating two tasks, collision avoidance and duty cycles, into one scheduling of sensors' activities
- This scheme consists of two parts:
 - A coloring scheme
 - A color scheduling scheme
- To reduce packet latency and save energy, guarantee the communication connectivity of links only in a sparse connected subgraph

Coloring

- Traditional coloring: L(d,k)
 - A function that assigns to each node an integer such that if x and y are adjacent, then $|color(x) - color(y)| \ge d$
 - ; if there is a two-edge path, then $|color(x) color(y)| \ge k$
 - To guarantee an entirely collision-free schedule in WSN
- In this paper, reduce the number of required colors

Why $L_s(d,k)$?

- As colors represent resources in networks, e.g. time slots in TDMA and codes in CDMA, due to high node density or constrained system resources.
- Communication among all pairs of nodes only requires collision-free links forming strongly connected graph
- Data gathering only requires that each node is connected to the sink by a collision-free path

$L_s(d,k)$

- We don't need to consider the entire graph, just consider its subgraph
- [21]: relative neighborhood graphs; [22]: local minimal spanning trees
- Network topologies can be changed by adjusting nodes' transmission power and the number of colors can be reduced by only guaranteeing required connectivity

L_s(d,k)-coloring (1)

$$|color(x) - color(y)| \ge \begin{cases} d \text{ if } y \in N_S^+(x) \\ k \text{ if } \exists z \in N_S^+(x), y \in N_G(z) \end{cases}$$

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
T[20]=	3	0	0	1	1	3	3	4	4	1	1	2	2	4	4	0	0	2	2	3
R[20]=	0	3	1	0	3	1	4	3	1	4	2	1	4	2	0	4	2	0	3	2

L_s(d,k)-coloring (2)

$$\begin{split} N_{S,G}(x) &\equiv N_S^+(x) \cup \{y | \exists z \in N_S^+(x), y \in N_G(z)\} \\ D_{S,G}(x) &\equiv N_{S,G}(x) \cup \{y | x \in N_{S,G}(y)\} \\ &= N_S^+(x) \cup \{y | \exists z \in N_S^+(x), y \in N_G(z)\} \cup \\ N_S^-(x) \cup \{y | \exists z \in N_G(x), y \in N_S^-(z)\} \end{split}$$

Fig. 2. Example of $N_{S,G}(x)$ and $D_{S,G}(x)$

$L_s(1,1)$ -coloring

 $wait_{x} \equiv \left\{ z | z \in D_{S,G}(x) \land (priority(z) > priority(x)) \right\}$

- Distributed algorithm
- On node x:
 - when received y's message <y,color(y)>
 - $If y \in N_G(x)$, it broadcasts it
 - If y e wait(x), remove y from wait(x), and record color(y)
 - Until wait(x) is empty, it chooses the smallest color from remaining colors, then broadcasts itself

$L_T(1,1)$ -coloring

- Data gathering from nodes to sink
- In BFS order

Color scheduling (1)

- Nodes are scheduled in (T,R); in slot i, a node is allowed to transmit iff its color is T[i%F], otherwise it turns off its radio to sleep
- To guarantees the connectivity of a link
 <a,b>∈ S (fully connected schedule)

Color scheduling (2)

- To reduce the number of switching between sleep and active modes
- The following scheme is optimal:

Color scheduling (3)

• Block i is assigned to color $\sigma[i\%|\sigma]$

 $\forall k \in [0, |\sigma| - 1], R[2k] = T[2k + 1] = T[(2k + 2)\%2 |\sigma|] = R[(2k + 3)\%2 |\sigma|] = \sigma[k]$

- If $\exists k, (\sigma[k]=x \land \sigma[k+1]=y)$ or $(\sigma[k]=y \land \sigma[k+1]=x)$, then the schedule is fully connected.
- Hence, the main work is to construct $\boldsymbol{\sigma}$

Color scheduling (4)

if K = 4p + 1, p > 0 then $\forall r \in [1, p]$, $\beta(K, r, 2p + 1 - r)$ is constructed. else if K = 4p + 3, p > 0 then $\forall r \in [1, p]$, $\beta(K, r, 2p + 1 - r)$ is constructed. $\alpha(K, 2p + 1)$ is constructed. endif

 σ is a concatenate of all the constructed sequences.

Example of σ construction

 $\begin{aligned} &\alpha(K,d) \equiv 0, \, d, \, 2d, \, \dots, \, (K-1)d \\ &\beta(K,d_1,d_2) \equiv 0, d_1, d_1 + d_2, (d_1 + d_2) + d_1, 2(d_1 + d_2), \, 2(d_1 + d_2) + d_1, \\ &\dots, (K-1)(d_1 + d_2), (K-1)(d_1 + d_2) + d_1 \end{aligned}$

$$\begin{split} &K = 9; \ \sigma = \beta(9,1,4) \circ \beta(9,2,3), \ \text{where} \\ &\beta(9,1,4) {=} 0,1,5,6,1,2,6,7,2,3,7,8,3,4,8,0,4,5 \\ &\beta(9,2,3) {=} 0,2,5,7,1,3,6,8,2,4,7,0,3,5,8,1,4,6 \\ &K = 11; \ \sigma {=} \beta(11,1,4) \circ \beta(11,2,3) \circ \alpha(11,5), \ \text{where} \\ &\beta(11,1,4) {=} 0,1,5,6,10,0,4,5,9,10,3,4,8,9,2,3,7,8,1,2,6,7 \\ &\beta(11,2,3) {=} 0,2,5,7,10,1,4,6,9,0,3,5,8,10,2,4,7,9,1,3,6,8 \\ &\alpha(11,5) = 0,5,10,4,9,3,8,2,7,1,6 \end{split}$$

Simulation(1)

• Consider 4 levels of connectivity

Connectivity	Subgraph S	Denotation		
Full Reserved	G	G		
Strong Connectivity	LMST	LMST		
Strong Connectivity w.h.p.	$\mathcal{G}_{n,d\log n,R}, d = 1, 1.5, 2$	S1, S1.5, S2		
Connectivity to Sink	BFS rooted at sink	BFS		

Simulation(2)

Simulation(3)

Simulation(4)

Conclusion

- According to the simulation, if this coloring is used by collision avoidance scheme
 - much less colors than traditional colorings
 - much less packet latency than traditional colorings