A Distributed Policy Scheduling for Wireless Sensor Networks

Infocom 2007
Yu Chen, Eric Fleury
2008/02/21

Outline

- Introduction
- Coloring
- Color scheduling scheme
- Simulation
- Conclusion

Introduction

- Save energy by collision avoidance + duty cycling
- Although duty cycling can save power, it also disrupts network performance
- Link disconnections
- Duty cycling needs synchronization to solve the above problems

Introduction(2)

- Save energy by integrating two tasks, collision avoidance and duty cycles, into one scheduling of sensors' activities
- This scheme consists of two parts:
- A coloring scheme
- A color scheduling scheme
- To reduce packet latency and save energy, guarantee the communication connectivity of links only in a sparse connected subgraph

Coloring

- Traditional coloring: $\mathrm{L}(\mathrm{d}, \mathrm{k})$
- A function that assigns to each node an integer such that if x and y are adjacent, then $|\operatorname{color}(x)-\operatorname{color}(y)| \geq d$
; if there is a two-edge path, then $|\operatorname{color}(x)-\operatorname{color}(y)| \geq k$
- To guarantee an entirely collision-free schedule in WSN
- In this paper, reduce the number of required colors

Why $L_{s}(d, k)$?

- As colors represent resources in networks, e.g. time slots in TDMA and codes in CDMA, due to high node density or constrained system resources.
- Communication among all pairs of nodes only requires collision-free links forming strongly connected graph
- Data gathering only requires that each node is connected to the sink by a collision-free path

$L_{s}(\mathrm{~d}, \mathrm{k})$

- We don't need to consider the entire graph, just consider its subgraph
- [21]: relative neighborhood graphs; [22]: local minimal spanning trees
- Network topologies can be changed by adjusting nodes' transmission power and the number of colors can be reduced by only guaranteeing required connectivity

$\mathrm{L}_{\mathrm{s}}(\mathrm{d}, \mathrm{k})$-coloring (1)

$$
\left\lvert\, \operatorname{color}(x)-\operatorname{color}(y) \geq\left\{\begin{array}{l}
d \text { if } y \in N_{S}^{+}(x) \\
k \text { if } \exists z \in N_{S}^{-}(x), y \in N_{G}(z)
\end{array}\right.\right.
$$

index 012345678910111213141516171819 $\mathrm{T}[20]=30011334411224400223$ $R[20]=03103143142142042032$

$\mathrm{L}_{\mathrm{s}}(\mathrm{d}, \mathrm{k})$-coloring (2)

$$
\begin{aligned}
N_{S, G}(x) \equiv & N_{S}^{+}(x) \cup\left\{y \mid \exists z \in N_{S}^{+}(x), y \in N_{G}(z)\right\} \\
D_{S, G}(x) \equiv & N_{S, G}(x) \cup\left\{y \mid x \in N_{S, G}(y)\right\} \\
= & N_{S}^{+}(x) \cup\left\{y \mid \exists z \in N_{S}^{+}(x), y \in N_{G}(z)\right\} \cup \\
& N_{S}^{-}(x) \cup\left\{y \mid z z \in N_{G}(x), y \in N_{S}^{-}(z)\right\} \\
& \\
& y^{3} \bigcirc 4
\end{aligned}
$$

Fig. 2. Example of $N_{S, G}(x)$ and $D_{S, G}(x)$

$\mathrm{L}_{\mathrm{s}}(1,1)$-coloring

$$
\text { wait }_{x} \equiv\left\{z \mid z \in D_{S, G}(x) \wedge(\text { priority }(z)>\text { priority }(x))\right\}
$$

- Distributed algorithm
- On node x:
- when received y 's message <y,color(y)>
- If $y \in N_{G}(x)$, it broadcasts it
- If $y \in$ wait(x), remove y from wait(x), and record color(y)
- Until wait(x) is empty, it chooses the smallest color from remaining colors, then broadcasts itself

$\mathrm{L}_{\mathrm{T}}(1,1)$-coloring

- Data gathering from nodes to sink
- In BFS order

Color scheduling (1)

- Nodes are scheduled in (T,R); in slot i, a node is allowed to transmit iff its color is T[i\%F], otherwise it turns off its radio to sleep
- To guarantees the connectivity of a link $<a, b>\in S$ (fully connected schedule)

Color scheduling (2)

- To reduce the number of switching between sleep and active modes
- The following scheme is optimal:

Color scheduling (3)

- Block i is assigned to color $\sigma[i \%|\sigma|]$

$$
\forall k \in[0,|\sigma|-1], R[2 k]=T[2 k+1]=T[(2 k+2) \% 2|\sigma|]=R[(2 k+3) \% 2|\sigma|]=\sigma[k]
$$

- If $\exists k,(\sigma[k]=x \wedge \sigma[k+1]=y)$ or $(\sigma[k]=y \wedge \neg \mid k+1]=x)$, then the schedule is fully connected.
- Hence, the main work is to construct σ

Color scheduling (4)

if $K=4 p+1, p>0$ then

$\forall r \in[1, p], \beta(K, r, 2 p+1-r)$ is constructed.
else if $K=4 p+3, p>0$ then
$\forall r \in[1, p], \beta(K, r, 2 p+1-r)$ is constructed.
$\alpha(K, 2 p+1)$ is constructed.
endif
σ is a concatenate of all the constructed sequences.

Example of σ construction

$$
\begin{aligned}
& \alpha(K, d) \equiv 0, d_{2}, 2 d, \ldots,(K-1) d \\
& \beta\left(K, d_{1}, d_{2}\right) \equiv 0, d_{1}, d_{1}+d_{2},\left(d_{1}+d_{2}\right)+d_{1}, 2\left(d_{1}+d_{2}\right), 2\left(d_{1}+d_{2}\right)+d_{1}, \\
& \ldots,(K-1)\left(d_{1}+d_{2}\right),(K-1)\left(d_{1}+d_{2}\right)+d_{1} \\
& \\
& K=9: \sigma=\beta(9,1,4) \circ \beta(9,2,3) \text {, where } \\
& \beta(9,1,4)=0,1,5,6,1,2,6,7,2,3,7,8,3,4,8,0,4,5 \\
& \beta(9,2,3)=0,2,5,7,1,3,6,8,2,4,7,0,3,5,8,1,4,6 \\
& K=11: \sigma=\beta(11,1,4) \circ \beta(11,2,3) \circ \alpha(11,5) \text {, where } \\
& \beta(11,1,4)=0,1,5,6,10,0,4,5,9,10,3,4,8,9,2,3,7,8,1,2,6,7 \\
& \beta(11,2,3)=0,2,5,7,10,1,4,6,9,0,3,5,8,10,2,4,7,9,1,3,6,8 \\
& \alpha(11,5)=0,5,10,4,9,3,8,2,7,1,6
\end{aligned}
$$

Simulation(1)

- Consider 4 levels of connectivity

Connectivity	Subgraph S	Denotation
Full Reserved	G	\mathbf{G}
Strong Connectivity	LMST	LMST
Strong Connectivity w,h.p.	$G_{n, d \text { logn, } R, d=1,1.5,2}$	S1, S1.5, S2
Connectivity to Sink	BFS rooted at sink	BFS

Simulation(2)

Simulation(3)

Simulation(4)

Conclusion

- According to the simulation, if this coloring is used by collision avoidance scheme
- much less colors than traditional colorings
- much less packet latency than traditional colorings

