Efficient Retrieval of User Contents in MANETs

IEEE INFOCOM 2007 Presented by Hanse Huan-Chun Tseng(曾煥鈞) ^{2008.1.31}

outline

- 1.Introduction
- 2.System Assumptions
- 3.Eureka
- 4.Simulation
- 5.Conclusion

Introduction

- MANET environment
 - Wireless nodes are free to move, join, leave the network-factors
 - Highly-dynamic network system
- MANET applications often require to use resource/services at a gateway or at another user devices

Introduction

- MANET as a peer-to-peer network
 - User nodes not only require **content delivery** but also act as **content providers**
- A visible application of peer-to-peer MANET is in the field of vehicular networks
 - Car-to-Car Peer-to-Peer (C2P2)

Introduction

- Solution: Eureka
 - Purpose
 - Reduce query/messages overhead from broadcast storms in a cooperative MANET environment
 - Concept
 - Exploit the information density
 - Methodology to identify regions of the network where the required information is more likely to be stored and steer queries there

HSCC,NTHU

System Assumptions

- Basic Features
 - Finite set of information items: each item has an identifier $0 \le i \le N$ and <u>it</u> is divided into chunks
 - Nodes query other nodes for missing information item with rate λ . Each <u>node generates queries for as many as C chunks</u> of the missing items
 - <u>Queries are broadcast</u> and relayed by other nodes
 - Nodes with all, or part, of the requested information chunks reply to the query. <u>Chunks are returned through an application-driven unicast path</u>
 - Information chunks retrieved by the requesting node are locally <u>cached</u> and then dropped at a rate of µ chunks per second

System Assumptions

- Message exchange
 - Queries
 - Broadcast by requesting and relaying nodes
 - Before relaying a query, a node stores its routing details (ID, src add, last add) and set status for the missing chunk to "pending"
 - Responses
 - MAC-layer unicast transmission by relaying nodes.
 - Next-hop chosen by routing tracks stored at relay node applications
 - Promiscuous mode are allows overhearing nodes to toggle the status of pending queries (pending-> solved)
 - Avoiding the relay of duplicated information msg.

- Eureka and Information density
 - Provide each node in the network with an estimate of information density in its proximity
 - Difference between local and other nodes' estimates are used to decide whether a query must be forwarded
 - Thus, queries travel toward areas where it is more likely that information is found

- Information density estimation
 - Fully distributed process, Run by all nodes
 - Information Density Function $\delta_i(x,y)$
 - Spatial density of information item i, cached at nodes around point(x,y)

Λ

• We measure the information density in copies $/m^2$ (in case of uni-dimensional topologies such as a highway scenario, we consider $\delta(x)$ measured in copies /m).

- Information density estimation
 - Two contributions
 - $S_{i,j}^{l}$: locally-computed density sample from generated, overheard and received information messages of item *i* at step *j*
 - $S^{d}_{i,j}$: density sample computed from advertised samples by neighboring nodes
 - A Moving Average(MA) filter weights the contributions and returns the density estimate $\delta_i(x,y)$
 - It is not important to us that the estimates match the absolute values of the actual density

- Three techniques to counter the drawbacks of flooding
 - 1. Queries are issued with a Time-To-Live(TTL)
 - 2. Relay nodes delay query forwarding by a Query Lag Time, in the hope that a response is returned by neighboring nodes

Mitigated Flooding

- Three techniques to counter the drawbacks of flooding
 - 1. Queries are issued with a Time-To-Live(TTL)
 - 2. Relay nodes delay query forwarding by a Query Lag Time, in the hope that a response is returned by neighboring nodes
 - Queries include information density as seen by issuing node; relay nodes forward query only if they "see" higher information density

- Three techniques To counter the drawbacks of flooding
 - Queries include information density as seen by issuing node; relay nodes forward query only if they "see" higher information density

Information Density Estimations

A. Local information density sample
S¹_{i,j}: locally-computed density sample from generated, overheard and received information messages of item *i at step j*

$$\left|-\frac{h_Q-1}{TTL}\right|$$

is equal to the number of hops covered by the query • Range between to 1 1

TTL

Information Density Estimations

• B. Distributed information density sample

$$s_{i,j}^d(n) = \frac{\sum_{m \in \mathcal{M}_{i,j}(n)} s_{i,j}^l(m)}{|\mathcal{M}_{i,j}(n)|}$$

• $M_{ij}(n)$ is the set of neighbor nodes which advertised their local sample to node *n*, for information item *i* and sampling step *j*

Information Density Estimations

• C. Overall information density sample

$$s_{i,j}(n) = \frac{s_{i,j}^l(n) + s_{i,j}^d(n)}{2}$$

• D. Finering and mjormation density estimate—using MA filter

$$\hat{\delta}_{i,j}(n) = \sum_{k=1}^{W-1} \left(1 + \alpha^W - \alpha^{W-k} \right) s_{i,j-k}(n) + \left(1 + \alpha^W - \alpha \right) \sum_{k=W}^{j} \alpha^{k-W+1} s_{i,j-k}(n) \quad (1)$$

$$\hat{\delta}_{i,j}(n) = \sum_{k=1}^{W-1} \left(1 + \alpha^W - \alpha^{W-k} \right) s_{i,j-k}(n) + \left(1 + \alpha^W - \alpha \right) \sum_{k=W}^{j} \alpha^{k-W+1} s_{i,j-k}(n) \quad (1)$$

Fig. 2. MA filter impulse response, with W = 100 and varying α

- Performance evaluation
 - Simulation with ns-2
 - Scenario parameter
 - Information set cardinality, N=[1,25]
 - Each information item divided into up to 30 chunks
 - Queries generation rate, $\lambda = [1, 6]$ queries/ms
 - Cached information drop rate, $\mu = [5, 50] \text{ drops/ms}$
 - Queries Time-to-Live, TTL=10
 - Topologies
 - Highway
 - Urban
 - Nodes have a 802.11 MAC layer, radio range : 100m

- Road Scenario : Highway
 - 5km straight, unidirectional road with three parallel lanes at different speeds
 - Lane changes allowed when overtaking
 - Speeds ranging from 15m/s to 45m/s
 - An "information gateway" node is located halfway along the road

15m/s~25m/s ; 4vehicles/s		
25m/s~35m/s ; 3vehiciles/s		
35m/s~45m/s ; 2vehicles/s		
•	5km	>
HSCC,NTHU		

• Estimation Accuracy – Highway

• Road Scenario : Urban

• CanuMobiSim

- City sections with traffic lights and stop signs at intersection.
- Vehicles enter/exit at random from 1 entry/exit points
- Speeds raging from 10m/s to 20m/s
- On average, 70 vehicles at 5.8m/s
- One "information gateway"

• Estimation Accuracy – Urban

Conclusion

- Eureka provides effective overhead reduction
- User use it to direct queries toward areas where the requested information is denser
- Broadcast storms are prevented and congestion is reduced

HSCC,NTHU

