Low-Power Distributed Event Detection in Wireless Sensor Networks

INFOCOM 2007
Presented by Huan-Chun Tseng

Outline

- * Introduction
- * Event detection
- * CAS: Coordinated Wakeup Scheduling
- * Performance Evaluation
- * Conclusion

Introduction

- * two essential properties of event detection applications to design energy-efficient detection protocols
 - physical events are usually persistent which can last for seconds or even longer, rather than ephemeral
 - a broad class of applications accepts a certain detection delay

Introduction

* Duty cycling is a fundamental approach to conserving energy in WSNs.

* Duty cycle
$$\,\delta = au_{on} \, / \, au_{cycle} \,$$

Introduction

- * CAS a completely localized algorithm
- * CAS is easy to implement and scalable to network density.
- it significantly reduces detection delay and improves detectability

Some assumptions

- * Binary detection model -- An event is reliably detected by an active sensor if its distance to the sensor is less than the sensing range.
- * Time synchronization
- * Stationary events -- After an event has occurred, it remains at the location where it happens.

Event detection

- * Duty Cycle: $\delta = \tau_{on} / \tau_{cycle}$
- * To conserve energy,
 - * Shorten τ_{on}

*
$$\tau_{on} = \tau_{wakeup} + \tau_{sensin g} + \tau_{processin g} + \tau_{communication}$$

- * Usually τ_{on} is fixed, tens of milliseconds [1]
- * Lengthen au_{cycle}

* Problem

* A longer au_{on} leads to a longer delay and lower detectability.

Event detection

- * Longer au_{cycle}
 - * Longer delay
 - * Lower detectability
 - * Longer network lifetime
- \star τ_{cycle} <= τ_{event}
 - * Detectability is 100%
- * $\tau_{cycle} > \tau_{event}$
 - * Some events possibly won't be detected.

RIW

- * Random independent wakeup
- * Simple but low efficient
- * The sensors which are close to each other may wakeup at about the same time due to the lack of awareness about their neighborhood.

RIW

- * RIW provides us a baseline of event detection with low duty-cycled sensors.
- * the key issue is the scheduling of sensor wakeups that can produce minimal delay and maximal detectability when the sensing cycle is fixed. ← challenge
- * we have the instructive observation that the sensors that reside closely should separate their wakeups as much as possible

CAS

- Coordinated Wakeup Scheduling
- Fully localized algorithm
- * Two component:
 - * Distributed scheduling coordination
 - * Aggressive wakeup adjustment
- * CAS assumes that every sensor is aware of the distance to each of its neighbors.

distributed scheduling coordination

- * Each sensor need to cooperate with neighbors to determine their wakeup time.
- * Tasks:
 - * Identify neighbors, which are sensors within **CR** (cooperative range), 0 < CR <= 2R_s
 - * Determine wakeup time

CAS state diagram

Fig. 2. CAS state transition diagram

- After using AWA to calculate the adjustment and waiting for a random time, one sensor broadcast this adjustment in a UPDT message.
- Upon receiving this UPDT message, if the sender is in the receivers neighbor list, the receiver cancel sending its own adjustment request and update its own wakeup time table.
- * Multiple rounds of AWA is necessary to reach a reasonable schedule plan.
- * Usually each sensor need to send 2 UPDT messages successfully at least.

Aggressive Wakeup Adjustment

- * A sensor need to determine
 - * whether it should adjust its wakeup time
 - * and what the new wakeup is
- * Sensor identifies the maximum separation and then selects the new wakeup by placing its wakeup in the middle of the maximum wakeup separation

- calculate Variance: difference between wakeup separations
- * If the new variance is decreased, sensor will generate a request to update its wakeup.

Performance Evaluation

- * Based on eXtreme Scale Mote [1].
 - * Communication range: 20m
 - * Sensing range: 8m

- * Processor power consumption: 24mW
- * Sensor power consumption: 24mW

*
$$\tau_{cycle} = 10s$$
 , $\tau_{on} = 0.1s$

* Side length: 300 m

Fig. 3. Detection delay vs. cooperative

Fig. 4. Detectability vs. cooperative

* The best CR is around 1.3Rs

Lower bound of CAS

Fig. 5. Delay comparison with different densities

Fig. 6. Detectability comparison with different densities, *t*=2s

Fig. 7. Delay comparison

Fig. 8. Detectability comparison

Conclusion

* We study low-power event detection in WSNs

* CAS is a fully localized algorithm for detection optimization.

 CAS only requires minimal knowledge of distances to its neighbors and is scalable to network