Low-Power Distributed Event Detection in Wireless Sensor Networks INFOCOM 2007 Presented by Huan-Chun Tseng ## **Outline** - * Introduction - * Event detection - * CAS: Coordinated Wakeup Scheduling - * Performance Evaluation - * Conclusion #### Introduction - * two essential properties of event detection applications to design energy-efficient detection protocols - physical events are usually persistent which can last for seconds or even longer, rather than ephemeral - a broad class of applications accepts a certain detection delay #### Introduction * Duty cycling is a fundamental approach to conserving energy in WSNs. * Duty cycle $$\,\delta = au_{on} \, / \, au_{cycle} \,$$ #### Introduction - * CAS a completely localized algorithm - * CAS is easy to implement and scalable to network density. - it significantly reduces detection delay and improves detectability # Some assumptions - * Binary detection model -- An event is reliably detected by an active sensor if its distance to the sensor is less than the sensing range. - * Time synchronization - * Stationary events -- After an event has occurred, it remains at the location where it happens. ## **Event detection** - * Duty Cycle: $\delta = \tau_{on} / \tau_{cycle}$ - * To conserve energy, - * Shorten τ_{on} * $$\tau_{on} = \tau_{wakeup} + \tau_{sensin g} + \tau_{processin g} + \tau_{communication}$$ - * Usually τ_{on} is fixed, tens of milliseconds [1] - * Lengthen au_{cycle} #### * Problem * A longer au_{on} leads to a longer delay and lower detectability. #### **Event detection** - * Longer au_{cycle} - * Longer delay - * Lower detectability - * Longer network lifetime - \star τ_{cycle} <= τ_{event} - * Detectability is 100% - * $\tau_{cycle} > \tau_{event}$ - * Some events possibly won't be detected. #### **RIW** - * Random independent wakeup - * Simple but low efficient - * The sensors which are close to each other may wakeup at about the same time due to the lack of awareness about their neighborhood. #### **RIW** - * RIW provides us a baseline of event detection with low duty-cycled sensors. - * the key issue is the scheduling of sensor wakeups that can produce minimal delay and maximal detectability when the sensing cycle is fixed. ← challenge - * we have the instructive observation that the sensors that reside closely should separate their wakeups as much as possible #### CAS - Coordinated Wakeup Scheduling - Fully localized algorithm - * Two component: - * Distributed scheduling coordination - * Aggressive wakeup adjustment - * CAS assumes that every sensor is aware of the distance to each of its neighbors. ## distributed scheduling coordination - * Each sensor need to cooperate with neighbors to determine their wakeup time. - * Tasks: - * Identify neighbors, which are sensors within **CR** (cooperative range), 0 < CR <= 2R_s - * Determine wakeup time # **CAS** state diagram Fig. 2. CAS state transition diagram - After using AWA to calculate the adjustment and waiting for a random time, one sensor broadcast this adjustment in a UPDT message. - Upon receiving this UPDT message, if the sender is in the receivers neighbor list, the receiver cancel sending its own adjustment request and update its own wakeup time table. - * Multiple rounds of AWA is necessary to reach a reasonable schedule plan. - * Usually each sensor need to send 2 UPDT messages successfully at least. # **Aggressive Wakeup Adjustment** - * A sensor need to determine - * whether it should adjust its wakeup time - * and what the new wakeup is - * Sensor identifies the maximum separation and then selects the new wakeup by placing its wakeup in the middle of the maximum wakeup separation - calculate Variance: difference between wakeup separations - * If the new variance is decreased, sensor will generate a request to update its wakeup. ## **Performance Evaluation** - * Based on eXtreme Scale Mote [1]. - * Communication range: 20m - * Sensing range: 8m - * Processor power consumption: 24mW - * Sensor power consumption: 24mW * $$\tau_{cycle} = 10s$$, $\tau_{on} = 0.1s$ * Side length: 300 m Fig. 3. Detection delay vs. cooperative Fig. 4. Detectability vs. cooperative * The best CR is around 1.3Rs #### Lower bound of CAS Fig. 5. Delay comparison with different densities Fig. 6. Detectability comparison with different densities, *t*=2s Fig. 7. Delay comparison Fig. 8. Detectability comparison #### Conclusion * We study low-power event detection in WSNs * CAS is a fully localized algorithm for detection optimization. CAS only requires minimal knowledge of distances to its neighbors and is scalable to network