Ad-hoc Localization in Urban District

IEEE INFOCOM 2007 Present: Chih-Kai Wang

Outline

- Introduction
- Urban Pedestrians Localization Overview
- Algorithm details
- Simulation
- Conclusion

Urban Pedestrians Localization Overview

- Each node id equipped with a personal area communication.
- Assume:
 - The same communication range r for all nodes.
 - The same maximum velocity Vmax for all the R_i^t nodes
- denotes an estimated area of presence(area of presence for simple)

Urban Pedestrians Localization Overview

Urban Pedestrians Localization Overview

- Data structure of obstacle map
 - Dividing target region into small grids and represent areas of presence and obstacles be sets of grids

- UPL Algorithm
 - Computing Area of Presence
 - Expanding Area of Presence by Communication Range
 - Intersecting Two Areas

• To expand area: APC(Area of Presence Computation) algorithm.

- UPL Algorithm
 - Computing Area of Presence
 - Expanding Area of Presence by Communication Range
 - Intersecting Two Areas

Position estimation

select $p \in R$ that minimizes $\max_{p' \in R} dist(p, p')$

- (a) 500m x 500m
- (b) 100m x 500m
- (c) 500m x 500m

Grid length (w)	1, 2 or 4 (<i>m</i>)
Radio range (r)	10 (<i>m</i>)
# of nodes	500, 1,000, 2,000 or 3,000
Speed distribution	Normal distribution of [1.0, 2.0],
-	[3.0, 4.0], [5.0, 6.0], [7.0, 8.0] or
	[9.0, 10.0] (m/sec.)
Hello message interval	2 (sec.)
Initial node deployment	Uniform distribution

l Road (c) Os

(c) Osaka Downtown

SIMULATION PARAMETERS

Parameter/Environment		Accuracy (m^2)	Completeness
	1	213.3	1.0
Grid length (m)	2	216.1	1.0
	4	408.4	1.0
	[1.0, 2.0]	216.1	1.0
Moving speed	[3.0, 4.0]	257.1	1.0
(m/sec.)	[5.0, 6.0]	319.1	1.0
	[7.0, 8.0]	397.0	1.0
	[9.0. 10.0]	438.0	0.96
# of nodes	500	435.5	1.0
	1,000	295.7	1.0
	2,000	216.1	1.0
	3,000	188.6	1.0

IMPACT OF PARAMETERS AND ENVIRONMENTS ON PERFORMANCE

- Impact of parameters and environments
 - Grid size: 1m, 2m, 4m for grid length
 - Completeness: 1.0
 - Accuracy: smaller gird comes better performance
 - Moving speed
 - Slow speed is better for accuracy and completeness
 - Number of nodes:
 - More node is better

- Impact of parameters and environments
 - Effect of ad-hoc localization and Precise
 Calculation of Movement

• Compare with MCL, Amorphous

Fig. 5. Estimated Position Errors

Conclusion

- A algorithm performs reasonable accuracy
- Apply obstacle information