Cross-Layer Design to Improve Wireless TCP Performance with Link-Layer Adaptation

Toktam Mahmoodi, Vasilis Friderikos, Oliver Holland, Hamid Aghvami VTC 2007 Fall 報告:王致凱

Outline

- Introduction
- Related Works
- Design
- Simulation
- Conclusion

Introduction

- TCP is by far the most widely used reliable end-to-end transport protocol supporting congestion control over the Internet.
- Packet loss means network congestion: once timer expire, Congestion Window will be divided by 2.

Related Work

- Proxy TCP
 - Worked by not passing duplicate acknowledgment to the TCP layer.

Related Work

- Reliable Link-Layer
 - ARQ: Causes the RTT to fluctuate
 - Forward Error Correction: May consume extra bandwidth through pro-actively transmitting redundant information

Related Work

• TCP and ARQ

 ARQ potentially increases the RTT of TCP, may cause TCP retransmission timer expire.

- Perform retransmission at link layer
 - Smaller RTT
 - Hide packet loss from TCP: Congestion window will not be incorrectly altered.

 Every non-ACK packet is categorized in a priority queue, according to its weight. The packet weight is assigned based on RTO (Retransmission Time Out)

$$w = 10^4 * n + RTO$$

- Define 3 queues:
 - Q1: never attempted to retransmission
 - Q2: tried once
 - Q3: tried twice
- Compare first packet of each queue: If RTO less than 2*RTT, it will be retransmitted first.

Algorithm 1 TCP-AWARE DYNAMIC ARQ ALGORITHM DESCRIPTION 1: IF w_{ij} IS LESS THAN 10⁴ THEN $Q1 \leftarrow P_{ij}$ 2: ELSE IF w_{ij} IS LESS THAN $2 * 10^4$ THEN $Q2 \leftarrow P_{ii}$ 3: ELSE IF w_{ij} IS LESS THAN $3 * 10^4$ THEN $Q3 \leftarrow P_{ii}$ 4: ELSE DROP THE PACKET 5: Sort Q1: $RTO_{i_{11}j_{11}} < RTO_{i_{12}j_{12}} < ... < RTO_{i_{1n}j_{1n}}$ 6: Sort Q2: $RTO_{i_{21}j_{21}} < RTO_{i_{22}j_{22}} < ... < RTO_{i_{2n}j_{2n}}$ 7: Sort Q3: $RTO_{i_{31}j_{31}} < RTO_{i_{32}j_{32}} < ... < RTO_{i_{3n}j_{3n}}$ 8: Starts Retransmission from Q1 9: IF $RTO_{i_{11}j_{11}}$ OR $RTO_{i_{21}j_{21}}$ OR $RTO_{i_{31}j_{31}}$ IS LESS $THAN \ 2 * RTT \ THEN$ Retransmit the corresponding packet ELSERetransmit $P_{i_{11}j_{11}}$ 10: Continue with Q2 and then Q3

- Simulation Parameter
 - Simulation Duration: 600s
 - FTP servers: 16MB file download size
 - HTTP servers: HTTP 1.1
 - Email servers: 2kB
 - TCP MSS: 1460B, Reno TCP
 - MAC buffer size: 32kB
 - MAC frame size: 320B (Fragmentation enabled)
 - Physical-Layer characteristic: OFDM (802.11a, 6Mbps)
 - Operation frequency: 5.4GHz
 - Traffic: FTP 40%, HTTP 35%, Email 25%

15 wireless clients, RTT for each flow is a uniformly distributed random variable with bounds set 5ms and 100ms

MAXIMUM END-TO-END AGGREGATED THROUGHPUT FOR THE UNIFORM, NORMAL AND EXPONENTIALLY DISTRIBUTED RTTS

RTT Distribution	Uniform	Normal	Exponential	
Throughput (kbps): Dynamic	550	560	325	
Throughput (kbps): 3. Ret	280	340	275	

- 15 wireless clients are mobile at a fixed distance of 55m from the AP. RTTs of end-to-end path are set according to different random distributions:
 - Uniform (a = 5 ms, b = 100 ms)
 - Normal (μ = 50 ms, σ = 20 ms)
 - Exponential ($\beta = 50 \text{ ms}$)

The third simulation scenario, using the same uniform distribution for endto-end paths' RTTs, wireless clients are in the distance of 55m from the AP. Throughput for this scenario is plotted against the number of clients in the simulation, varied from 5 through 20.

15 wireless clients, and the same RTTs for the end-to-end paths, the wireless link Bit Error Rate (BER) is increased from 10⁻⁶ to 10⁻³

AVERAGE PERCENTAGE OF TCP RETRANSMITTED PACKETS IN THE FIRST, SECOND, THIRD AND FOURTH SCENARIOS.

Simulated Scenario	1^{st}	2^{nd}	3^{rd}	4^{th}
Dynamic Scheme (ret. packets)	10%	9.7%	11.5%	10.4%
3. Ret Scheme (ret. packets)	11.6%	11.2%	13%	12%

Conclusion

- A TCP-aware dynamic ARQ algorithm has been proposed.
- The results presented in Tables 1-2 and Figs. 2-4 show a 15-60% improvement in end-to-end performance.