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Introduction

m The cooperative collision warning system will
work by vehicles cooperatively sharing

[ Information( location, speed, heading,
acceleration, etc)

m In order to enable the operation of such a
system, it is required that a vehicle build a
map of the relative location of neighboring
vehicles, in an accurate and reliable way
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Introduction

m GPS-based
— Global positioning system (GPS)
e 10 meters error

— Differential GPS
e 3-7 meters error

— Bridges , tunnels , skyscrapers
m Radio based ranging techniques
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Related work

m Radio based ranging techniques
— Stationary sensor network

m Moblility makes localization much more
difficult and that position estimation
errors increase with speed

m Robust quads algorithm (unambiguous)

m Mobile sensor network ( arbitrary
direction, speed bound)



Radio based ranging techniques
m Signal strength indicator
m Time-of-flight

m Angle-of-arrival
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Problem definition

m Consider a cluster of n vehicles labeled
1,2,...n
= A = [Xq, Xou Xg, Y1..Y]

m Three main vectors
— Inter-vehicle distance (radio based ranging)
— Velocity information ( onboard sensors)
— Road map (road boundaries)



Information collected

1. Inter-vehicle distance measurements are
made by each vehicle using a radio ranging
technology to estimate their relative
distance

Vehicles will read their own speed
iInformation

3.  Standard multicast

4. n*(n-1) inter-vehicle distance and n velocity
readings
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m Vehicle position estimation
[]
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Motion model

A=A T T+ Tawq (2)

B A= Xy Xoge-Xnko YieYnil ' (38)

B U = Vaakar = Vank1 wika Vynkal' (3b)
T: sampling interval
A,: the position of vehicle at time k
W, _, :mobility variations
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’ ‘Random variable A

Road digection
y 90- 6
"0
", Orthogonal to road direction
90- 6 fa
y

Xi=0cos 8 +Asin 6

02 = 02,0082 0 + g?,sin? 6
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‘ node4(10,20)
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Kalman filter gain

- Kk:Pk|k-1HkT(HkPk|k-lHkT '1

mIf R (noise) is large , Kalman filter gain
Is small

mIf R (noise)is small, Kalman filter gain
IS large

mZ, =h(A)+V,
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Assume that Kalman filter gain between nodel and node2 = 0.8
Then node2(-10+ 0.8*1, -20 + 0.8*1) = (-9.2, -19.2)

nodel(0,0)

node2(-10,-20) ——  node2(-9.2,-19.2) A
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Vehicle position estimation

1. Each vehicle performs inter-vehicle
distance measurement, and take a
reading of its own velocity The

Information
vehicles wit

Update the
Incorporate

w N

IS then shared with all
NN the cluster

orediction function (9)(10)
the measurements from

step 2 to update (11)(12)
4. Repeat step 1-4, at the update rate ,Ts
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Algorithm performance bound

Kalman Posiion Estimation Ermar
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Fig. 1. Cramér-Rao bound for position estimates versus our Kalman filter
based solution, lower curve shows performance gain by forcing the position

estimate to be within the confines of the road
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Experimentation results
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Simulation environment
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Fig. 2. Roadway for simulated vehicular environment
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Performance Metrics

m Root-mean-square error (RMSE)

Tfinal = \

T

2 : (J-'fma] est. i — actual ijz + (ﬂﬁnﬂl est. i — Uactual i)'2

I
1=1

(211

M

Ty = \ Z (di,j ;Idi~j'}2

ig=1

23



Performance comparisons with other
algorithms

10

final position estimate RMSE, oy (M)
n
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distance RMSE, o4 (m)

* KALMAN & NLLS « ROBUST QUADS
= = Linear (KALMAN) Linear (NL-LS) === Linear (ROBUST QUADS)

Fig. 3. Showing effect on performance when the inter-vehicle distance
estimation error is varied
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Performance comparisons with other
algorithms
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- Fig. 4. Comparison of Nonlinear Least ot Squares approach to our Kalman
filter based approach, also the performance of using GPS with a mapping

module is shown for reference




Conclusions

m The accuracy of previously proposed
radio ranging based localization can be
Improved by taking into account extra
iInformation that is available to vehicles

m |t Is practical for future vehicle safety
applications
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