Delivering of Live Video Streaming for Vehicular

Communication Using Peer-to-Peer Approach

INFOCOM 2008 workshop Lee-Wei Li

2008/6/5

- Introduction
- A Distributed Vehicles-Adaptive Clustering Algorithm (DVAC)
- A Vehicles-Adaptive Peer-To-Peer Relay Method (VAPER)
- Simulations
- Conclusion

- For Vehicle-to-Roadside Communication (VRC), the delivering of live video streaming collapses easily
 - Shadowing effect of signal translation
 - Long-length tunnel
 - Low base-station deployment
- For inter-vehicle communication (IVC), the traditional peer-to-peer approaches of delivering live video streaming can not be employed

- Driving on highway
- Vision systems
 - Displayers
 - Cameras
- Vehicular systems
 - Wireless ad-hoc networks
 - Geographic Positioning System (GPS)

A Distributed Vehicles-Adaptive Clustering Algorithm (DVAC)

- DVAC is a rule-based and message-driven algorithm for adapting to vehicular communication and composed of distributed procedures, called V-procedures
- Each cluster with a unique cluster ID is organized with a cluster-head, a cluster-tail, and some ordinary vehicles (cluster members)

Fig 1. The sample scenario of DVAC.

- Four type of message
 - CH
 - CT
 - JOIN
 - RESIGN

Fig. 2 Diagram of the relationship between V-procedures and the messages.

Fig. 3 Clustering samples of V-procedures.

A Vehicles-Adaptive Peer-To-Peer Relay Method (VAPER)

- For intra-cluster, the cluster-head performs the master propagator and the tail performs the backup propagator
- For inter-cluster, both of the cluster-head and the cluster-tail perform the roles of peer-topeer relays and employ the signaling procedures called HOOK procedures to identify the forward and backward connected peers

A Vehicles-Adaptive Peer-To-Peer Relay Method (VAPER)

- The mutual connected peers between clusters are pairwise alignment (cluster-tail, cluster-head)
- Only the pair with the maximum relative distance between cluster-tail and cluster-head will be selected and associated with peering relationship
 - Island Hopping
 - Reducing the propagation delay
- Six types of message
 - REQ, REPLY
 - REQ_HOOK_ON, REPLY_HOOK_ON
 - REQ_HOOK_OFF, REPLY_HOOK_OFF

Fig. 4 Diagram of the relationship between HOOK procedures and the messages.

(a) Intra-cluster VRC.

Simulations

TABLE I
INPUT SIMULATION PARAMETERS

Vehicle speed(km/h)	$20 \sim 110 \text{ km/h}$
Radio Transmitting Range(meter)	300 m
Length of the Signal Shielding Area(meter)	900 m
Simulation Time(seconds)	120 senonds
Main Traffic Flow: MF (vehicles/h)	MF= 250, 500, 650, 1500, 3000
Cluster Size: K (vehicles/per cluster)	K=5, 15, 30, 50

Fig. 6 Statistics of the average re-clustering ratio.

Fig. 7 Statistics of the average hook failure ratio.

- This work integrates the clustering algorithm-DVAC and the peer-to-peer method-VAPER as an application-layer overlay-network solution
- By the V-procedures in DVAC and the HOOK procedures in VAPER, delivering of live video streaming for Infotainment and safety applications in VANET is possible to be implemented