A Passive Geographical Routing Protocol in VANET

2008 IEEEE Asia-Pacific Services Computing Conference Guangtao Xue, Jinsheng Feng, Minglu Li

Presented by L. W. Lee 2009/3/5

Outline

- Introduction
- Related Works
- Routing Process
- Simulation and Performance Analysis
- Conclusion and Future Work

Introduction

- VANET have some characteristics
 - Maybe no stable infrastructures are available
 - Network topology and states may change rapidly. Nodes may perhaps have no long communication session time
 - Power and memory are not problems in VANET
 - VANET may have many building obstacles between nodes in city urban environments
- Traditional ad hoc routing protocols require high routing overhead and do not use any available information to maximize routing performance

Related Works

- Source routing protocol
 - Dynamic Source Routing (DSR)
- Distance vector protocol
 - Destination Sequence Distance Vector (DSDV)
 - Ad hoc On-demand Distance Vector (AODV)
- Position based protocol
 - Greedy perimeter stateless routing (GPSR)
 - Grid Location Service (GLS)
 - Weak State Routing (WSR)

Assumptions

- On-board GPS device
 - Position and velocity information
- City road map
 - Position prognostication
- Beacon messages
- Route announcement packet
- If source has no destination geographical Information, it simply sends packets towards its movement direction

Geographical information local propagation (Beacon)

Notation	Description	B
TS	Local time stamp, integer variant for	
17	each node	
X	x coordinate	s l
Y	y coordinate	A
V	Velocity magnitude	C C
D	Velocity direction	
DT	Velocity direction stable duration	

 DV will be used to determine the geographical information cache time by others and route announcement propagation frequency by the source

Geographical information remote propagation (Announcement)

- We must have a mechanism to disseminate information to some longer distance
 - Route announcement messages
- Intermediate nodes which receive announcement packets will forward them along the direction they are sent

Geographical information remote propagation (Announcement)

- We must have a mechanism to disseminate information to some longer distance
 - Route announcement messages
- Intermediate nodes which receive announcement packets will forward them along the direction they are sent

Figure 2: Announcement sending. Nodes send out announcement packets in 4 orthogonal directions along their velocity direction. I.e. nodes send 4 packets as 0, 90, 180, 270 degree, which 0 degree is related to their movement direction. 90 and 270 degree announcement packets will be sent periodically. Other 2 direction announcement packets will only be sent when nodes' velocity direction change.

Packet Forwarding

- For data packet sending, we may have destination's geographical information or not
 - Bad situation: source sends data in its movement direction. Packet forward direction can be fixed by intermediated nodes, which have destination's info.
 - Good situation: source will prognosticate destination's current location and then forward packet to the best next hop

Location prognostication mechanism

Figure 3: location prognostication is as, Y = X + S, Node was at X at time t0, then moves to Y at time t1. S is defined as $S = |V| \times \triangle T$, $\triangle T = t1 - t0$.

Algorithm for packet forwarding in PGR

PacketForward(*p*)

- 1: Src <- *p*.Header[Source]
- 2: Des <- *p*.Header[Dest]
- 3: entrySrc <- *RouteTable*[Src.ip]
- 4: entryDes <- *RouteTable*[Des.ip]
- 5: //Update source's route table entry if necessarily
- 6: if(Src.TS > entrySrc.TS) then
- 7: *RouteTable*[Src.ip] = Src

8: end if

- 9: //Update destination's route table entry, or packet header
- 10: if(Des.TS > entryDes.TS) then
- 11: *RouteTable*[Des.ip] = Des

12: else

13: *p*.Header[Dest] = *RouteTable*[Des.ip]

14: end if

- 15: // Prognosticate dest new location
- 16: DestLocation <- *Prognosticate*(Des.ip)

17: //Find nearest next hop

18: Nexthop <- *FindNearestNexthop*(DestLocation)

19: SendPacket(Nexthop)

Simulation and performance analysis

Packet delivery ratio

Figure 4. Packet delivery ratio

Network Simulator (NS2) Topology :20Km * 20Km Data packet : 512 bytes Number: 100 vehicles Simulation time :180 seconds

Simulation and performance analysis

Average End to End Delay

Average Hop Count

Simulation and performance analysis

Conclusion

- The algorithm does not assume a global location query service system to be pre-deployed, which is most of the practical case in VANET environments
- PGR provides high data packet delivery ratio in high dynamic topology of VANET with lower overhead comparing to the traditional routing protocols

Future work

- In realistic urban environment, there may be many obstacles such as buildings and trees along the street, which make communication of nodes in adjacent streets impossible
- Some nodes are isolated when they go far from others, which makes the network many subnetworks. We may change out algorithm to adapt to DTN