CONDITIONAL
TRANSMISSIONS:
PERFORMANCE STUDY OF A
NEW COMMUNICATION
STRATEGY IN VANET

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2007

OUTLINE

- □ INTRODUCTION
- NEW APPROACH FOR VANET
- CONDITIONAL-TRANSMISSION TECHNIQUE
 - Principle
 - Useful Conditions
 - Performance Discussion
- PERFORMANCE STUDY
- CONCLUSION

INTRODUCTION

- □ The topological routing algorithms
 - more control messages are required
- □ The geographical routing protocols
 - bandwidth wastage
- The hierarchical routing protocols
 - The overhead needed to build such clusters increases and the clusters are less stable

INTRODUCTION

- □ The movement-based routing protocols
 - □ it is not sufficient nor practicable in all the situations
- The broadcasting-based routing protocols
 - requires more control messages and then consumes more bandwidth when the dynamic increases

NEW APPROACH FOR VANET

- Avoiding the Addresses
- □ Path Maintenance
 - consists in the maintenance of a communication that began when the receiver was in the neighborhood of the sender
- □ Conditional Transmission

6

- conditional addressing instead of network addressing
- path maintenance instead of traditional unicast
- conditional transmissions instead of broadcast

CONDITIONAL-TRANSMISSION TECHNIQUE :Principle

- it is passed by to the application layer if CUP(the upward condition) is true
- it is forwarded to the neighbors when CFW(the forward condition) is true.
- the conditional transmission has no impact on the security of the routing layer.

trajectory-matching algorithm

- They can also concern trajectory-related information to determine whether a mobile is on the same trajectory than the sender or not.
- \Box compare $(h_1^*w_1 + h_2^*w_2 + ...)$ to a predefined empirical threshold

Performance Discussion

- □ Control Overhead
 - The header is about 200 B
 - a conditional transmission does not require control messages
- □ Processing Time
 - □ In [8], the impact of the interpacket gap (IPG) in intervehicle wireless communications is studied
- □ Collisions
 - \blacksquare A condition such as "rand() < 1/n"

Simulation Methodology

Simulator Configuration

- □ The transport protocol is UDP
- □ consider 20 vehicles per convoy

Single Convoy

The Other Road-Traffic Scenarios

	OLSR	Fast OLSR	AODV	HOP
Single convoy	21 %	8 %	23 %	36 %
With stopped veh.	14 %	2 %	15.7 %	36 %

	OLSR	Fast OLSR	AODV	HOP
Single convoy	21 %	8 %	23 %	36%
With crossing convoy	7 %	2 %	15.7 %	36 %

	OLSR	Fast OLSR	AODV	HOP
Single convoy	21 %	8 %	23 %	36 %
With perp. convoy	12 %	2 %	15.7 %	36 %

CONCLUSION

- Conditional transmissions Instead of transporting addresses or positions, a message is sent with some conditions used for retransmission or reception.
- Conditional transmissions can efficiently support the high dynamic of the networks
- The simulation results show that the conditional transmissions offer better performances than the other algorithms and is not affected by the roadtraffic scenario.